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with physically motivated (but nonoptimal) estimates is also proposed. Simulation of this latter
estimator for moderate sample sizes indicates that near-optimal performance is obtained by this
technique. Within the context of recursive estimation, a recursive decision-directed estimator for
on-line identification of the parameters of the Class A model is proposed. This estimator is based
on an adaptive, Bayesian classification of each of a sequence of Class A envelope samples as either I
an impulsive sample or as a background sample. The performance characteristics of this algorithm
are investigated, and an appropriately modified version is found to yield a global, recursive estima-
tor of the parameters that performs very well for all parameter vectors in the parameter set of
interest. Within the context of efficient estimation for small sample sizes. an algorithm that has the
potential of providing efficient estimates of the Class A parameters for small sample sizes is pro-
posed. For the single-parameter estimation problem, it is shown that the sequence of estimates
obtained via this algorithm converges, and a characterization of the point to which the sequence
converges is given. For both the single-parameter and two-parameter estimation problems, it is
also seen. via an extensive simulation study, that the proposed estimator yields excellent estimates
of the parameters for small sample sizes. It is anticipated that the results of this research will have
widespread impact in the areas of communications, radar, and sonar due to the common occurrence
of impulsive noise channels in these systems.
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IDENTIFICATION OF IMPULSIVE INTERFERENCE CHANNELS

I Serena M. Zabin, Ph.D.
Department of Electrical and Computer EngineeringI University of Illinois at Urbana-Champaign, 1989

3 In this work, the problem of optimum and near-optimum identification of the parameters of

the Middleton Class A impulsive interference model is considered. In particular, under the

assumption of the availability of a set of independent samples from the Class A envelope distribu-

3 tion, the problems of basic batch estimation of the Class A parameters, recursive identification of

the parameters, and efficient estimation of the parameters for small sample sizes, are investigated.

Within the context of basic batch estimation, several estimators of the parameters are proposed and

their asymptotic performances explored. From this analysis, estimates based on the method of

U moments are seen to be consistent and computationally desirable but highly inefficient, whereas

3 more efficient likelihood-based estimators are seen to be computationally unwieldy. However, an

estimator that initiates likelihood iteration with the method-of-moments estimates is seen to over-

3 come these difficulties in its asymptotic performance. Unfortunately, simulation of this third esti-

mator for moderate sample sizes reveals poor performance under these conditions. To overcome

3 this lack of moderate-sample-size efficiency, a similar estimator that initiates likelihood iteration

with physically motivated (but nonoptimal) estimates is also proposed. Simulation of this latter

estimator for moderate sample sizes indicates that near-optimal performance is obtained by this

3 technique. Within the context of recursive estimation, a recursive decision-directed estimator for

on-line identification of the parameters of the Class A model is proposed. This estimator is based

3 on an adaptive, Bayesian classification of each of a sequence of Class A envelope samples as either

an impulsive sample or as a background sample. The performance characteristics of this algorithm

are investigated, and an appropriately modified version. is found to yield a global, recursive estima-

3 tor of the parameters that performs very well for all parameter vectors in the parameter set of

interest. Within the context of efficient estimation for small sample sizes, an algorithm that has theI
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potential of providing efficient estimates of the Class A parameters for small sample sizes is pro-

posed. For the single-parameter estimation problem. it is shown that the sequence of estimates

obtained via this algorithm converges, and a characterization of the point to which the sequence

3 converges is given. For both the single-parameter and two-parameter estimation problems, it is

also seen, via an extensive simulation study, that the proposed estimator yields excellent estimates

3 o tne pa.,ameters for small cample sizes. It is anticipated that the results of this research will have

widespread impact in the areas of communication, radar, and sonar due to the common occurrence

I of impulsive noise channels in these systems.

I
I
U
I
U
I
I
I
I
I
I
I



I
I V

U
I
I
I
I
I
I
3 To my mother

I
I
I
I
I
I
U
I
I



I

3 TABLE OF CONTENTS

I PAGE

1 IN TRODU CTION ......................................................................................................................... 1

2. THE CLA SS A IN TERFEREN CE M ODEL ................................................................................ 3

3. BA SIC BA TCH ESTIM A TION .................................................................................................. 7

3.1. Introduction ........................................................................................................................ 71 3.2. A M ethod-of-M om ents Estim ator .................................................................................. 8
3.3. Asym ptotically Efficient Estim ation .............................................................................. 20
3.4. Threshold-Comparison/Likelihood Estimator .............................................................. 25

3.5. Conclusions ......................................................................................................................... 32

3 4. RECURSIV E IDEN TIFICA TION ............................................................................................. 33

4.1. Introduction ........................................................................................................................ 33
4.2. A Basic Decision-Directed (BDD) A lgorithm ................................................................. 34

4.3. A Global Decision-D irected A lgorithm ......................................................................... 46

4.4. Sim ulation Results .............................................................................................................. 62

I 4.5. Conclusions ......................................................................................................................... 69

5. EFFICIENT ESTIMATION FOR SMALL SAMPLE SIZES:
STHE EM ALGORITH M ............................................................................................................... 70

5.1. Introduction ........................................................................................................................ 70
S5.2. The EM A lgorithm .............................................................................................................. 71

5.3. Estim ation of Class A Param eters ................................................................................ 72

5.4. Single-Param ter Estim ation Problem ........................................................................... 74

5.5. Tw o-Param eter Estim ation Problem .............................................................................. 86
5.6. Conclusions ......................................................................................................................... 94

I 6. SUM M A RY AND CON CLU SION S ......................................................................................... 95

3 APPENDICES

A. DERIVATION OF RESTRICTIONS ON BDD ALGORITHM ....................................... 98

I B. EXPRESSIONS FOR THE COEFFICIENTS OF EQ. (5.28) ................................................ 116

REFEREN CES .............................................................................................................................. 117

VITA ............................................................................................................................................ 119

I



I

5 1. INTRODUCTION

Communication systems are seldom interfered with by white Gaussian noise alone, yet receiv-

ing systems in general use are those which are optimum for white Gaussian noise. The man-made

3 electromagnetic environment, and much of the natural one. is basically "impulsive," i.e., it has a

highly structured form characterized by significant probabilities of large interference levels. In

3 addition to the man-made electromagnetic environment, there many other different, common and

widely-used communications and remote-sensing type channels where impulsive noise dominates.

e.g.. extra-low-frequency (ELF) channels, urban radio networks, underwater acoustic channels.

3 and telephone line channels. This is in contrast to the Gaussian noise processes inherent in transmit-

ting and receiving elements. Since the conventional receivers are effectively linear, the impulsive

3 character of the interference can drastically degrade the performance of conventional systems. In

fact, it has been well established [11-[5] that the performance of communications, radar, and sonar

I systems operating in impulsive channels can be greatly enhanced if the true statistics of the channel

3 are known and exploited. Consequently. the problem of identifying impulsive noise channels is an

important one in the development of systems that can approach the performance limits set by such

3 channels. To do so, one first needs to develop a model for the interference that fits available meas-

urements, is physically meaningful when the nature of the noise sources, their distributions in time

3 and space. propagation. etc.. are taken into account, is directly relatable to the physical mechanisms

giving rise to the interference, and is tractable for signal detection problems.

A physically-meaningful and widely-used model - r impulsive interference that satisfies the

3 above requirements is the so-called Class A Middleton model [6]-[8]. This model is parametric.

with parameters that can be adjusted to fit a great variety of non-Gaussian noise phenomena arising

in practice. The parametric nature of this model makes it amenable to identification through point

3 estimation techniques. Furthermore. this model, which features a non-Gaussian impulsive com-

ponent, superimposed on a Gaussian background component, has found wide application in several

3 problems of practical interest (see. e.g.. [5],[91). A complete description of Middleton's Class A

noise model, including its derivation, further motivation, and taxonomy, can be found in [51.[61,[8].I
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This study is devoted to the problem of obtaining global optimal and near-optimal 3
identification procedures for the Class A interference model. The problem of estimating the param-

eters of the Class A model was first considered by Middleton in [101 and [11]. In these studies, I
Middleton outlines three methods for determining the model parameters. The first is an empirical

procedure whereby the parameters are obtained graphically from the experimentally determined

distribution function. Expressions for the parameters in terms of the moments of the Class A pro- 3
bability distribution function are given in the second method. The third procedure requires that

experimental values of the distribution function ard its slope at vanishingly small thresholds be I
available The parameters are then determined via two relations involving these measurements.

Other work on the Class A estimation problem includes that of Powell and Wilson [12]. wherein

standard batch estimation techniques are used to estimate the parameters for a restricted range of 3
parameter values.

We begin this study with an overview of the Class A interference model, which is given in I
Chapter 2. In Chapter 3. the problem of basic batch estimation of the Class A parameters from an

independent sequence of Class A samples is considered. In particular, within the context of batch

estimation, our goal is two-fold : (i) to obtain a consistent and asymptotically efficient estimator of 3
the parameters and. (ii) to obtain a practical estimator of these parameters which performs well for

moderate sample sizes. The problem of recursive identification of the Class A parameters is 3
addressed in Chapter 4. Our objective here is to obtain a global recursive estimator of the parame-

ters which performs well for all parameter vectors in the parameter set of interest. In Chapter 5,

we develop an efficient estimator of the paramters with good small-sample-size performance glo- 3
bally A summary of the research results is given in Chapter 6. I

I
U
I



*3

3 2. '. HE CLASS A INTERFERENCE MODEL

3 In this study, we will focus our attention on the model defined in [81 as the "strictly canoni-

cal" Class A interference model. An overview of the model will be given in this section. Further

details of this model can be found in [61-[8].

In Middleton's strictly canonical Class A noise model, the received interference is assumed to

I be a process having two independent components :

3 Z(t)=ZP(t)+ZG(t)

The first component. Z., is represented by

(t) .3,t--)I
where U, denotes the j -th waveform from an interfering source and y represents a set of random

3 parameters which describes the waveform scale and structure. It is next assumed that only one

type of waveform. U, is generated, with variations in the individual waveforms accounted for by

I appropriate statistical treatment of the parameters in y, and the generic waveform U (t) is obtained

* explicitly from the underlying physical mechanisms [6]. Under the additional assumption that the

sources emit their waveforms independently according to the Poisson distribution in time, the

first-order characteristic function for Z2 is given by (see. e.g., [7])

F(i f)p = exp [<AJ (B )- A >]

where B0 denotes the envelope of U when U is written in envelope and phase form. Jo is Lhe Bessel

3 function of order zero. and <'> denotes required sta 'stical averages over the random epoch

representing the time at which the typical j -th source emits, Doppler velocities (if any). and the

I random signal parameters in y. The second ccmponent. ZG, is an additive stationary Gaussian

3 background process attributable either to receiver noise or to the limit of a high density Poisson

process representing the contributions of unresolvable background source., or both. Hence. under

I
the assumption that this background component has zero mean and variance CTG. its first-order

I
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characteristic function is

F (-i 20, 2/2

and the overall characteristic function for the process is then given by
F~i ),p.r = F(if),pF(IJ)G.

which can be approximated canonically as follows [71[8]: 3
00 212

F(i)P+G -e -A A e -c. /2(2.1)
M--o MI

where

2 2, 2
Cm -m <Bo>/2 + G

and A is a positive parameter to be defined below. For computational purposes, it is convenient to

consider the normalized variable 3
z X/(<X > + <x;>).

Transforming (2.1) for the normalized variable Z yields the desired probability density function

(pdf): 3
Pz (z) e-A E, e (2.2)

where 3
m

M2+A A

and where r is a sec,-nd paidmeter (also to be defined below). The corresponding Class A envelope

pdf is given by 3
3
U
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2e 00 Am
2 Ze

= m o ',,1 z ., 0 ( 2 .3 )

0 z<O

It is the envelope statistics which will be used in the estimation problem addressed here. Note that

this envelope pdf consists of an infinite mixture of weighted Rayleigh densities. The m = 0 term is

3 attributable to the background component of the input interference. 1 whereas all terms indexed by

m > 1 are attributable to the impulsive (Poisson) component of the input interference plus an

appropriate contribution from the background component of the interference.

3 The two basic and traditional parameters of the model are A and r. Let us consider their

definitions and physical significance:

i) A is the "Overlap Index" or "Nonstructure Index.* Specifically.

A AvTf , (2.4)

where Y is the average number of emission events impinging on the receiver per second and T, is

3 the mean duration of a typical interfering source emission. Note that Y is simply the rate of the

Poisson process underlying the impulsive part of the interference. Thus. A is a measure of the

amoun. or temporal overlap among the interfering signals. The smaller A is. the fewer the number

of emission "events" and/or their durations so that the (instantaneous) noise properties are dom-

inated by the waveform characteristics of individual events. As A is made larger, the noise

becomes less structured, i.e., the statistics of the instantaneous amplitude approach the Gaussian

distribution (asymptotically as A -,oo, although A Z 10 is considered a large value for A).

'Note that (To= F/ + F). It follows from the definition of r (given in (2.5)) that o-(r/Il + I)) is simply the inten-
sity of the Gaussian component of the input interference. Thus, even though the m - 0 term appears to depend on the Class
A model parameters, via some simple manipulations, it can be seen that the only quantity it actually depends on is the inten-
sity of the Gaussian component of the input interference. Consequently, the m = 0 term is entirely attributable to this
background component.

I
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ii) I is called the "Gaussian factor." It is the ratio of the intensity of the independent Gaussian

2

compo,*nt of the input interference, c "G. to the intensity flza of the non-Gaussian component. i~e.,

<Z 1><
> where nlAAA<B. >/2. (2.5)

By adjusting the parameters A and r, the density in (2.2) can be made to fit a great variety of

non-Gaussian noise densities. In particular. the Class A model is appropriate for interference I
caused by intentionally radiated signals (e.g.. as in the crowded HF band) and has also found con- 3
siderable application in various acoustical (e.g.. sonar) problems. Examples of Class A interference

include (depending on the receiver bandwidth) the emissions of various man-made devices such as 3
radio frequency dielectric heaters, soldering machines. plastic welders. etc., as well as natural

phenomena such as grinding arctic ice plates. Typical values for the parameters include U
(A = i0 4 .r = 50) for narrowband interference from ore-crushing machinery and

(A 0.35, r = 5.0 X 10 4 ) for power-line emissions.

Although A and r are the traditional parameters of the Class A model, instead of estimating

A and r. we will consider the problem of estimating A and K. where

KAAr . (2.6)

i.e.. U
K = 2o-6/<B >.

This reparametrization proves useful since it increases the analytical tractability of the estimation

problem. Finally. tnroughout this study. where specific values of A and K are considered, we will I
restrict our attention to the parameter set 3

AA {(A .) T E 2 : 10' 2 A 41 and 10"6<K -I0 - 2)

since this is the :,4nge of usual practical interest for these parameters (see, e.g., [91.110].) 1
U
I
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3. BASIC BATCH ESTIMATION

1 3.1. Introduction

3 In this chapter, we will consider the problem of basic batch estimation of the Class A parame-

ters from an independent sequence of Class A envelope samples. Within the context of batch esti-

mation. our goal is two-fold: i) the first goal is to provide an asymptotically optimal estimator of

the parameters of Middleton's strictly canonical Class A noise model; and (ii) the second goal is to

provide a practical estimator for these parameters that performs well for moderate sample sizes.

The starting point in this study is an estimator proposed in [101 based on the method of

moments, in which parameter estimates are chosen to make population moments agree with sample

Imoments. In Section 3.2 we provide an analysis of the asymptotic performance of this estimator.

We show that, although this estimator is strongly consistent, its asymptotic variance for one

parameter can be unacceptably high due to the insensitivity of population moments to this parame-

3ter. We then turn, in Section 3.3. to the problem of asymptotically efficient estimation. We first

analyze the estimation potential in the Class A model by considering the inverse of Fisher's infor-

Imation matrix for the model in the parameter ranges of practical interest. It is seen from this

analysis that the Class A model can, in fact, afford good estimates of all of its parameters if

efficiency can be achieved.

3We then consider two estimators that can achieve efficiency. The first of these is maximum-

likelihood, which proves to be unwieldy due to root multiplicity problems in the likelihood equa-

I tion and to poorly behaved gradients. The second estimator is one which corrects these two

3difficulties by initiating likelihood search with the method-of-moments estimates considered in Sec-

tion 3.2. Because of the consistency of the moments estimator, this second estimator retains the

3efficiency of maximum-likelihood without the associated computational problems. Unfortunately,

simulations show that this estimator does not perform well for moderate sample sizes for most

Iparameter values of interest due to the extremely low efficiency of the initiating estimator at these

I
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parameter values. Thus, although this estimator is attractive irom a theoretical viewpoint, its use 3
as a practical estimator is limited. However, as we show in Section 3.4. its basic feature of doing

likelihood iteration to improve an initial estimator can be used to develop a very good practical I
estimator. In particular, in Section 3.4 we explore (via simulation) the moderate-sample-size 3
performance of such an estimator initiated with a physically-based estimator motivated by a pro-

cedure proposed in [101. Our simulation of this estimator indicates that it achieves practical 3
efficiency for moderate sample sizes.

Some concluding remarks are contained in Section 3.5. 3
3.2. A Method-of-Moments Estimator I

The method of moments is a simple, intuitively appealing, and computationally expedient 3
estimation technique introduced by K. Pearson in 1894. The problem of estimating the parameters

of the Class A model via this method has been considered by Middleton in (101,[ifl. In this section. 3
the asymptotic properties of these estimates are analyzed. In particular, it will be shown that the

method of moments yields estimates of the Class A model parameters which are strongly consistent

and aymptotically normal. Furthermore. explicit expressions for the asymptotic variances of the 3
normalized estimates will be obtained and computed for a broad range of parameter values. The

performance of the estimator will then be evaluated on the basis of these computations. 3
3.2.1. Parameter estimates 3

Let Z p.... Z, be a random sample from the Class A envelope distribution w ( z) with

unknown parameter vector 6 = (A XK)r to be estimated. In the sequel, we assume that the obser- -
vations Zi. i = 1.... .n are independent. The method of moments consists of equating an appropri-

ate number of sample moments to the corresponding moments of the distribution, which are func- I
tions of the unknown parameters. By considering as many moments as there are parameters to be 3
estimated, and solving the resulting equations with respect to the parameters, estimates of the

latter are obtained. 3
I



I

I 9

For the Class A envelope distribution, the most promising moments to use in this context are

the fourth and sixth moments. These are the lowest-ordered even moments of interest (the second

moment is constrained to unity), and no odd-ordered moments are obtainable in closed form. Use

of higher-ordered even moments can result in multiple solutions when equating sample and popu-

lation moments. Let ju denote the j -th moment of w ( z ). Then. (see, e.g., (131).

A-2-2 )2+ 2 and A6 = 6 + 1A +6. (3.1)
(A+K) 2  (A +K) 3  (A +K) 2

I For A 1 0, hence for all OEA, inversion of (3.1) yields unique expressions for the parameters A

and K in terms of A4 and z6 . Specifically.

3A4 I
A- I - ' fl (/ 4,A 6 ) (3.2a)

A~6 _ 
3

A~4 +212 -I -- -- + 2
6 2

and

K I 3A4 12 A f2 (94,-6d.(3.2b)

+21 1 p 3Pz4+2-- +2 - +2

16 2 J 6 2I
The method-of-moments (MM) estimators based on these two moments, -- ,. = (An ,K,, )r, are then

I given by

4 
3

-- 1

i 2 (3.3a)

and

I
I
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A4
4 _

2

64~ 2 +J {6 ~~2I

where 7A4 and A 6 denote the 4-th order and 6-th order sample moments, respectively, i.e..I

Consider (3.2a) and (3.2b). Note that f, and 12 are discontinuous only on

{.4 6)T ER 2 . 6 _ +3A41.ie. n{~., 6  ER2  =94- 12). Using the expressions

Ao I

for 4 and A6 given in (3.1). we have that - -2 + 2 = (A apl )3omen epce. i A> a

K > 0. then A6 > 9/A4 - 12 and I
4 > 2, where the latter inequality follows from the expression

for bL given in (3.1). Thus, via relations (3.1). the parameter set A maps into the open set

flnA I 4 ,U6)r E( 2 
/ > 2 and 36.> 9A 4 - 12) on which f, and f2 are defined and continuous.

This fact will be used below.

3.232. Asymptotic properties of 0

In this section we consider the asymptotic properties of the estimators of (3.3). These proper-

ties are summarized in the following two results. th

Theorem 3.1. (Consistency) The MM estimator 5 is a strongly consistent estimator of 0 forI

all 0 E A.

Proof. Let 9 A 4  > )T and (A6 4 A 6.- Since Z Znd2 are i.i.d. and c E 2 for 0 E A. we

have that s 9 by the Strong Law of Large Numbers (SLLN) which implies that I
lim ~ Me(3.4)I

n -co

on a set w.p.1. Now. A fl (A and An =f I Thus, it follows from continuity of fI on a

aj. I



and (3.4) that lir A,, = A on a set w.p.1. Similarly, since K = f2I(Ao) and fK,, = f2(), we
n -O

as.
have by continuity of 12 on fl and (3.4) that lir K. = K on a set w.p.1. Thus, 0 -n and the

n -

proof of consistency is complete. 0I
Theorem 3.2. (Asymptotic Normality) : For each 0 E A. 'r/' (, -- ) is asymptotically normal

with mean zero and covariance matrix B9 t B . where

I Varr(Z 4) C_(Z4. Z6)

CaVe (Z 4.Z 6) Vare (Z 6)

* and

B9 6A 4  &6 6

0/A4 &L6 Iae

Proof. Let a94 (A 4 .-A)T.d ( 4., A6Y and X, = (Z, ,Z 6 )r where Z 1 . ...Z, is our sequence of

i.i.d observations. Then {--}~ is i.i.d. with mean vector A9_ and covariance matrix +e. (Expres-

sions for the elements of *_0 will be given below. We note here that all are defined and finite for
~1 n 1

OEA.) Since A 4 =- f Z 4 and rA6 = ,-1Z6. we have by the multivariate Central Limit
nI,=1 nI=

Theorem (CLT) (see [14], Thin. 5.1.8) that

D[rIn (rR 4 - M4). "n (A 6-n 6)] N (0. to)

as n -'oo. Now, if it can be shown that fI and f2 are real-valued functions of gq. defined and con-

tinuously differentiable in a neighborhood co( go) of A_ and such that the matrix B9 is nonsingular

in c . then (see [141. Thin. 5.1.9)

I
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[v4-(f,(_)f, (A_)).,In(/2(6) -f2(RO_))]T- N(.B_ oB) (3.5)I

as n -too, whence it follows that
D

[,n- A --. -K)]r -N(O,B_ *B_) (3.6)

as n -oo. Note that we are concerned with the validity of (3.5) only for all Re corresponding to

GE A. Hence. we proceed to verify the above conditions for all u_0 in the open set fl. I
i) That f, and f2 are real-valued functions on 12 is clear.

ii) To show that f, and f 2 are continuously differentiable on f0. it suffices to show that afL and

of:
a.i = 1.2. are continuous on this set. Thus. let us consider the form of these partial deriva-

tives: Leta -4 -- /31 3/ 4 + 2. Then.
-0 -- - 1. t3 1- 2- ---

_ = 3 J+3 (3.7a)A4 TI

- I -- 13 (3.7b)
96 3 .I 1

M = 3a + '_ 1 3 Ic - (.c

and T 4  2p2 2-
andI

1 - + If.a 1. (3.7d)

aJU6  6/32 T

Note that the partial derivatives are discontinuous only on {E F 2 :/3 = 01. But I
E R2: - _"3_ + 2= o =n a by definition of 0.

iii) To show that B9 is nonsingular for Ae E 0. we must show that detBo ; 0 for all such /s-

Now,

I
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Idet Be= Ohl hj Oh V2h
61Ai.4 8 I6I~ /A6 J1 I 4

I Substituting the expressions given for the partial derivatives in (3.7a-d) and simplifying, we have

* that

detB 9 =- 1 _

which is nonzero iff a Led 0. Thus, B9 is nonsingular for all Re with /1 4  2. But

I fQC{_ ER 2 :4 e- 2} by definition of nl. Thus. Be is nonsingular for all Re E n.

The verification of the conditions is now complete. Consequently, (3.6) holds for all 0 E A,

i.e., 5n is asymptotically normal 1 ,B 0 Bi-J for E A. 0

3.2.3. Asymptotic performance of An and K ,

The performance of the normalized MM estimates A, /A and Kn/ K will now be considered.

Expressions for the asymptotic variances of these estimates will be obtained and computed for a

broad range of parameter values in A. Note that the normalizations are necessary in order that a

I meaningful comparison of the computed variances be made since the parameters take on widely

varying values. Let C 1 [-0] and C 2~ [ 0.-]1. Then, from (3.6). we have thatI A K

3 c (rn (An - A ).' /T(, -K) . (. c _C _ B c)

and

D
C2 ( ['/ (A. - A4n). (, -K K)]r -- N(O.C 2B9_jjcIB )

i.e..

,/-- N (0. cJ N*(0 . cB B ) (3.8a)

and

U



I

14 I
. K -- 2N(O.C2 BOB[Cr. (3.8b)

Let EA and Ex denote the asymptotic variances of A,. /A and K,. 1K. respectively. Then. I
EA =C ti BIC T (3.9a)

and

ErK C 2 B9 BTC~. (3.9b) i
We seek expressions for these variances in terms of the parameters A and K. To this end, we

begin by substituting the corresponding matrices for B0 . * C 1 . and C 2 . From (3.9a) we have that

6A1 I ~c4 6A6 Vare (Z 4) COVO (Z 4 .Z6) 0/h4 6Ah6 ;T
EA =  10

V2 2 h Co 0 (Z ,. Z 6) V - (Z 6) 0 012

0IL4 OIL 6  A 0 64 A/6 e (3.31a)

- jo12i Var (Z 4) + 2 Cov(Z 4 Z6) O+ OI j+fo 12 Varl (Z 6)3

A2  a-A4 - - l4 /16 - 8A6

Similarly, (3.9b) yields I

Varq(Z 4 ) CovO(Z'.Z 6) O/4 0'6 o

EM = h K] :: 1 CoVO(Z4.Z 6) Vare(Z 6) ah Oh 1

O /h4 O/ 6 -e 6 4 A6 _ I
(3.10b)

[ - - "[~~ 01-f11 I
J2 Vareq(Z 4) + 2 CoVq(Z'4,Z 6) L! a21 + I jf _2,Varo(Z 6).

I

I
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Expressions for the partial derivatives a . -b--. i = 1. 2. have been given in (3.7a-d) in terms of

3 /14 and A6, which in turn can be expressed in terms of A and K via (3.1). Expressions for the

eighth, tenth. and twelfth moments of w ( z ) can be obtained in a manner completely analogous to

U that used in obtaining A4 and A6 . Thus. Varo (Z 4), Var6 (Z 6), and ,Cove (Z 4, Z 6) are readily

i expressed in terms of A and K. The final results are stated here:

f 3(A +K)3 + 3(A +K)2. (3.11a)

__ L = -(A +K) 3 . (3.11b)

V2 I_ _3 (A +K) 4 + (1-6A) (A+K)3-- 3 (A+K)2. (3.11c)

&LL4 ae 2 A2A T

02 ja =- -1 (A+K)4 +-( A + K ) 3 . (3.11d)
I60 6 A 3(3ld

Varqo(Z 4 ) =20+- 136A + (24A - 4A 2) + 24A (7A +4K) (3.11e)

V+(A +K) 2  (A +K)4  (A +K)4

Vare(Z 6) 720 [(A 6 +15A 5 +65A 4 +90A 3 +31A 2 +A) (3.11f)
(A +K)6

+ (6A SK + 60A 4K + 150A 3K + 90A 2K + 6AK)

I + (15A 4K 2 + 90A 3K 2 + 105A 2.K2 + 15AK 2)

3 + (20A 3K 3 + 60A 2K 3 + 20AK 3)

S+ (15A 2K 4 + 15AK 4 ) + (6AK 5 + K6 )]

6A + 18A +2

I (A +K)3 (A +K)2

I
I
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(A 120 5 [(A + 10A 4+25A + 15A 2+A)C~v-( 4 Z ) (A" +)5

+ (5A 4K + 30A 3K + 35A 2K + 5AK)

+ (10A 3K 2 + 30A 2K 2 + IOAK 2 ) (3.11g)

+ (10A 2K3 + 10AK 3 ) + (5AK.4) +K 5] I
_ 2 +1 6A + IA +6.2 + 2  (A+K )3 (A-+K)2

The asymptotic variances EA and EX have been computed for ((A .K)r E Al logA E {0.-1,-2} 3
and logK E {-2.-3,-4.-5.-6}} using (3.10a). (3.10b), and (3.1la-g) (see Tables 3.1 and 3.2). In

addition, values for the asymptotic mean-square norm relative error (MSNRE) Er, Er 41 EA + EX. 3
are given in Table 3.3. Note that the primary contribution to Er is from EX . In fact, for K < < A,

the contribution to E, from EA is negligible and it is for this case that E, becomes extremely

large. Hence, consider EA. 3
For A fixed. Ex(A K) increases as K decreases and takes on very large values when

K < < A. For K fixed. EK(A XK) increases as A increases and again takes on very I'±rge values 3
when A > > K. Note specifically that when A -1 the asymptotic variance EK becomes extremely

large. These observations are easily explained when one considers the form of IA, and 6 (see (3.1)).

U
Table 3.1. ASYMPTOTIC VARIANCE OF A 1A (EA)

K 10-2 10-3 10-4 10- 106I

10-2 2.550337X 10 3  2.468429X10 3  2.460431X10 3  2.459633x10 3  2.459554x103

10-  1.472224X10 3  1.44879OX10 3  1.446479x10 3  1.446248X10 3  1.446225x 103

1 4.792669x 103 4.750635x10 3  4.746463x 1O 4.746046x10 3  4.746005x 103 3
I
I
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I rabie 3.2. ASYMPTOTIC VARIANCE OF I// 1K(E 1 )

KI 10-2 10- 3  10-4  10-5  10-6
A -

3 10-2 6.663680x10 3  5.264450x 104 5.963216x106 6.041263x10 8  6.049149x1010

10-1 2.449795x10 4  2.951534x10 6  3.005101xI08  3.010491x101 0  3.011030x1012

1 1.073910x107 1.083890x10 9  1.084889x10 1  1.084989X10 13  1.084999X10 _

I

Table 3.3. ASYMPTOTIC MSNRE FOR MM ESTIMATOR ( E,.)

K 10-2 10-3 10 10-5  10"
A

10-2 3.216705x10 3  5.511293x104 5.965677X106 6.041288X10 6.049150X10I '

10-1 2.597017x104 2.952983X10 6  3.005115X10 8  3.010491X10' °  3.011030X1012

1 1.074389x10 7 1.083895x109 1.084889X101I 1.084989X1013 1.084999X10 5
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Note that u, and /26 depend inversely on powers of (A +K), and K appears only :z. Lhis way.

Thus, when K < < A IAL4 and,/6 are insensitive to changes in K. This is evident in Tables 3.4 and

3.5. For A fixed, it becomes increasingly difficult to resolve 44 [/161 as K decreases, particularly for

K < < A. hence the increasing values for Ex. The second observation stated above is accounted

for by the fact that, for K fixed, increasing A makes K relatively small in comparison to A,

which in turn makes the moments and the ez*,imator less sensitive to K. For A = 1 , 44 [/161 are

nearly the same for all K. since K < < A for all values of K under consideration. In fact, I.4 [U6]

for K =10 -5 equals J"4 Lu6] for K = 10--6 up to five significant digits. Thus, in order that a reason- -
able estimate of K be obtained, the number of samples used must be large enough so that a resolu-

tion of the moments up to five decimal places is achieved. (It should be noted that this insensi-

tivity of the moments to changes in the value of K when K < < A is also evident in the higher-

ordered moments.)

Consider the worst-case error for E7 , which occurs for A = 1. K= 10-6. A comparison of I
Tables 3.2 and 3.3 indicates that this quantity is essentially the asymptotic variance Ex. Given

that A = 1. K = 10-6. suppose we want the probability that (A,1A. ,/K ) lies within a circle of

radius 0.1 with center at (1.1) to be 0.9. Let 3

C _(3.12)
0 1To 1

Since. from (3.6). we have that

- N(0.CB *B CT).

I
a straightforward calculation shows that

A2 + K 2  <4 n (0.1) 2  
- 0.9

I
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I
Table 3.4. FOURTH-ORDER POPULATION MOMENT (J"4)

K 10-2 10- 3  10- 10- 5  10-6

10-2 5.200000x 10' 1.672893x10 2  1.980592x10 2  2.016006x10 2  2.019600x10 2

10- ' 1.852893x10' 2.160592X10' 2.196006X101 2.199600X10' 2.199960X10'

1 3.960592 3.996006 3.999600 3.999960 3.999996

I
I
3 Table 3.5. SIXTH-ORDER POPULATION MOMENT (/6)

K 10-2 10-3 10-4 10-5 10"6

o10-2 7.9560000x10 3  4.6572491x104 6.0005942x10" 6.1622765x10 4  6.1787644X10 4

10- 1 6.0554921xi0 2  7.6480738x10 2  7.8384413xI0 2  7.8578404x10 2  7.8597840x10 2

1 2.9468870x10' 2.9946090x101 2.9994601x10' 2.9999460x10 1  2.9999946x1I01

I
U
I
U
I
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requires n (0.1)2 to be approximately 2.94 X1O'5, or n to be approximately 2.94 Xl0 17 . This is an

unrealistically large sample size for most applications and thus reveals the moments estimator to be

highly inefficient in this sense. The potential poor performance of the moments estimator has been m

verified via simulation for a wide range of parameter values.' Whether this inefficiency is inherent 3
in the Class A model or is a property of the method-of-moments estimator will be determined in

Section 3.3. 3
3.3. Asymptotically Efficient Estimation 3

We have seen in the previous section that the method of moments yields a strongly consistent

and asymptotically normal estimator of the parameters of the Class A model. However. the MM m

estimator has a serious shortcoming. Specifically. for values of K < < A, the asymptotic MSNRE 3
is astoundingly large. This is due to the fact that the MM estimator is highly insensitive to

changes in the parameter K when K < < A. A natural question that arises is whether this insensi- 3
tivity is a property of the MM estimator or is an inherent feature of the Class A model, i.e., is it

possible to improve on the performance of the MM estimator? To answer this question. let us 3
examine the Cramer-Rao Lower Bound (CRLB).

3.3.1. The Cramer-Rao Lower Bound

We begin with the following assertion. Let 0.=(A*.K*)" denote an estimator of m

o = (A .K ) based on n i.i.d. observations. Under regularity conditions on the class of estimators 3
O under consideration [151, it may be asserted that if 0* is asymptotically normal with mean

vector 0 and covariance matrix n ~.,then the condition

C [ -[I (k)]-I]C r > 0 (3.13) m
must hold, where C is the nonsingular, symmetric matrix defined in (3.12) and I (0) denotes

Fisher's information matrix: 3
'This ineciency is also corroborated for a restricted range of parameter values by experimental results presented m

in [12].

3
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U log W(Z)~ [12 log W(Z)J logw(Z)J
I (-)=Ee (3.14)

a logw(Z)j{L log w(Z) log W (Z3

It follows from (3.13) that

tr [ C[ (I ([IC)1]CT I 1 0

which, in turn, yields the following lower bound on the asyaptotic MSNRE of *n :

5 ,[ C 1 > tr,[ C 2 [1 (Gj)]-l 1. (3.15)

Now. if 0 * is an asymptotically efficient (A.E) estimator of 0, then I= [i(O)]-' and (3.15)

holds with equality. Thus, let E, denote the asymptotic MSNRE for an AB estimator. Then.

I r' = trC2 [I (0)-1]. (3.16)

I We will now consider the contribution to E, due to estimating each parameter in the two-

parameter estimation scheme. Let EA denote the asymptotic relative variance due to estimating A

via an AE estimator and let Ex denote the corresponding quantity for the parameter K. Since

ie [I(O__)I~ for an AE estimator. it follows that

E; = V, (C z 2o' V7* =- V, [C [2 ( .)]-l Vr (3.17a)

3 and

E = V2 (c 2 )v v2  [ C2 [1[(0)] - ]v2. (3.17b)

where V, A [1.0] and V2 A [0,1]. Thus, (3.17a) and (3.17b) imply that

EA = [(-)]51/A2  (3.18a)

and

I E
E = [I (-1I/K2 (3.18b)

3 where [I (.j)1-1 denotes the jj-th element of the inverse of the matrix I (V.

I
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Examining the theoretical lower bounds on the asymptotic MSNRE and asymptotic relative 3
variances as given by (3.16) and (3.18a.b). we can determine whether an improvement in perform-

ance over the method-of-moments estimator is possible. Moreover. the degree of improvement pos- I
sible can be ascertained by a comparison of EA and EA. E, and E' , Er and E'. The quantities

EA, -K. and Er have been computed and tabulated for (A XK) E Al logA E {0,-1,--2' ad

log K E {-2.-3,-4,-5.--6}} (see Tables 3.6 - 3.8). A discussion of the results follows. I
We note by a comparison of EA and E' (Tables 3.1 and 3.6), E.K and E' (Tables 3.2, 3.7),

and Er and Er (Tables 3.3. 3.8) that the values for the asymptotic variances and asymptotic I
MSNRE dictated by an AE estimator are significantly lower than the corresponding values for the I

MM estimator for all parameter pairs under consideration. Moreover, whereas for the MM esti-

mator, the primary contribution to Er is from Ej, for the AE estimator, neither EA nor Ex dom-

inates.

Consider the asymptotic MSNRE. Since E, Er, the moments estimator is not only I
inefficient in the sense described in Section 3.2.3. but it is not asymptotically efficient. Moreover. 3
the apparent improvement in performance yielded by an AE estimator is tremendous, particularly

for values of K < < A , i.e., in the region where the MM estimator is most inefficient. Note also 3
]

Table 3.6. ASYMPTOTIC RELATIVE VARIANCE DUE TO
ESTIMATING A VIA AN AE ESTIMATOR (EA) 3

K 10-2 10-3 10-4 10-5 10-I

10-2 6.2440X101 5.1972x10' 5.0865x101 5.0735X101 5.0720X101 3
10- 1  6.7196 5.7920 5.6860 5.6732 5.6716 3
1 1.5909 1.3509 1.3224 1.3188 1.3184 I

I
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Table 3.7. ASYMPTOTIC RELATIVE VARIANCE DUE TO

ESTIMATING X VIA AN AE ESTIMATOR (E;)

K 10-2 10-3  10-4  10-5  10-'

10-2 6.2945x10' 5.2961x101  5.1869x10i 5.1744x101 5.1730x101

10-1 7.5054 6.8492 6.7839 6.7773 6.7767

3 1 4.8083 4.2365 4.0854 4.0470 4.0385

I

Table 3.8. ASYMPTOTIC MSNRE FOR AN AE ESTIMATOR CE;)

K 10- 2  10-3  10-4  10-s 10"6

3 10-2 1.2539x10 2  1.0493xi0 2  1.0273xi0 2  1.0248X10 2  1.0245x10 2

10- 1 1.4225x10 1  1.2641x101 1.2470x10 1  1.2451x10 1  1.2448xI0'

3 1 6.3991 5.5874 5.4078 5.3658 5.3569

I
I
I
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that the maximum and minimum values for Er are 1.0850 x 1015 and 3.2167 x 103, respectively, as 3
opposed to a maximum and minimum value of 1.2539 x 102 and 5.3569. respectively, for El.

Furthermore, E, achieves its maximum value at the same point at which Er achieves its minimum

value, namely at A = 1 . K = 10--6. In fact, the improvement at this point is on the order of I01-.

Thus. there is a dramatic improvement in performance in the area where it is most needed.

3.3.2. Likelihood-based estimators m
The question posed at the beginning of the section has now been answered. In particular, the 3

high insensitivity of the MM estimator to changes in the parameter K is a feature of the estimator.

It is not a feature of the model. Moreover, we can expect a significant improvement in performance m
given that an asymptotically efficient estimator can be found. Naturally, the search for such an 3
estimator begins with maximum likelihood.

Unfortunately. maximum-likelihood estimation for the Class A model turns out to be 3
unwieldy. Numerical experimentation with the likelihood equation (LE) reveals that the LE can-

not be readily solved for the maximum-likelihood estimator. In particular, the likelihood function I
has steep gradients. the LE has multiple roots for finite sample sizes, etc. Moreover, closer exami- 3
nation of the LE in the context of estimating a single parameter (fixing K and considering the prob-

lem of estimating A only) reveals that the LE does not have a unique root asymptotically for all 3
(A Y E A. For example, for (A K) = (10-2,10-4). the LE has roots at A = 10-2 and at

A -0.308312 asymptotically. This multiplicity of roots implies the existence of inconsistent I
sequences of roots to the LE when the problem of estimating A only with K known is considered 3
and a similar phenomenon may be the source of difficulty in the two-parameter situation.

Thus, we have a consistent estimator (the MM estimator) which is highly inefficient and we 3
have a potentially efficient estimator which is computationally difficult (and possibly inconsistent).

However, the consistency of the moments estimator can be combined with the potential efficiency I
of likelihood-based estimation to yield a consistent and asymptotically efficient estimator of the 3
parameters of the Class A model. This is done via a standard procedure [14] whereby Newton's I
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3 root-finding method on the LE is initiated with a J -consistent estimator and, in so doing, both

the consistency of the consistent estimator and the efficiency of likelihood-based estimation are

retained. A natural initial estimator to use in such a scheme for the Class A estimation problem is

the MM estimator, which was shown to be consistent in Section 3.2.2. That the MM estimator is.

in fact. IT -consistent follows from its asymptotic normality. Thus. provided certain regularity

3 conditions are satisfied by the densities w (see [14]). Newton iteration on the LE initiated with the

MM estimate will be consistent and efficient.

1As a practical matter, this type of estimator will work only if the initial estimate (the MM

3 estimate) is reasonably close to the consistent root of the LE. Unfortunately, simulation studies

using several thousand samples indicate that this closeness is not achieved for most values of A

3 and K of interest. In fact, the MM estimator frequently produces invalid (e.g., negative) initial

estimates for these sample sizes. Thus, even though this procedure performs well asymptotically,

there are limitations as to how well it can perform for a moderate number of samples. the source of

3 this poor performance being the high inefficiency of the moments estimator.

However, as we shall see in the following section. by starting with an initial estimator with

3 enhanced efficiency and iterating around it until Newton's method converges, we can obtain a better

estimator. Hence. we turn now to an estimator which, despite the fact that it lacks the asymptotic

optimality properties of the Moment /Likelihood procedure described above, appears to be much

3more efficient than this procedure for moderate sample sizes.

33.4. Threshold-Comparison/Likelihood Estimator

In this section. we consider a practical estimator based on the idea of using likelihood iteration

3initiated with a physically motivated, but nonoptimal, estimator. In particular. we consider a pro-

cedure which uses as its initial estimator a scheme motivated by Middleton's approximate empirical

procedure. This latter estimator, described in [10,[111, is a graphical procedure based on features

3 of the finite sample size distribution. The threshold comparison estimates are n,-,ated in the fol-

lowing way: Note that we can decompose the Class A envelope pdf w (2.3) into two components.I
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The first of these corresponds to the m = 0 term and is attributable to the Gaussian background 3
noise component; the second corresponds to all terms indexed by m > 1 and is attributable pri-

marily to the impulsive noise component. As it happens, these two terms can be clearly dis- 3
tinguished for most A and K values of practical interest if we consider the envelope distribution

function P( Z > z.). Typical envelope distributions are shown in Figs. 3.1 and 3.2. We note I
from the form of this function that it divides the z, -axis into three regions: the first corresponds to 3
smaller values of z,, in which the Gaussian background noise component dominates; the second

corresponds to larger values of zo. wherein the impulsive noise component dominates; and the third 3
corresponds to intermediate values of z,. for which P ( Z > z. ) is virtually constant. The portion

of the distribution corresponding to these intermediate values of z. will be termed the "null I
region." We note that for values of A > 10-1 and r 10-3 , the departure from the straight-line, 3
Gaussian (actually, Rayleigh, since the envelope distribution is being considered) portion of the dis-

tribution is abrupt and extensive. In this case, the null region is clearly identifiable. Thus, we can 3
set a threshold a at any value of the abscissa (z. ) corresponding to a point in this null region (see

Fig. 3.1) so that, with high probability, samples falling below at* can be attributed to the Gaussian I
background component and samples exceeding &* can be attributed to the impulsive component.

For values of A < 10-1 or r > 10- A the departure from the straight-line. Rayleigh portion is

gradual and/or less extensive, in which case such an a* can be chosen to be the abscissa value (zo) I

at which the distribution begins to depart, observably, from its straight-line (Rayleigh) behavior

(see Fig. 3.2). 3
The above feature of the envelope distribution can be used to obtain estimates of the parame- 3

ters A and K. In particular, from an i.i.d. sequence, Z 1 ..... Z", of Class A envelope samples. we

can determine an estimate of the threshold a* from the sample distribution function. We then 3
divide the observations Z 1 ... Z,, into a set {ZI.Z 2 ... .r I consisting of those lying above at*
and a set {Z ,Z2 ..... Z )consisting of those falling below c*. Since A is approximately the I

expected fraction of impulses in a random sample, it can be estimated as 3
I
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Impulsive Component

3."Null Region"
0

- Gaussian Component
N

I A
P(Z>z o )

Fig. 3.1. Typical envelope distribution for A > 10- 1 and r < 0 -  Note the
abrupt and extensive departure from the straight-line (Rayleigh) por-
tion of the curve. (The distribution is plotted on linear (for z.) by
0.5 logl0 (-logP) coordinates.)

I
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> Imusv Component

Is I

I
I
I

GImpulsive Component

Gauss '"- ian Component I

I ,*

A

P(Z>zo) I
I

Fig. 3.2. Typical envelope distribution for A < 10- 1 and r > 10- 3. Note the
gradual and brief departure from the straight-line (Rayleigh) portion of
the curve. (The distribution is plotted on linear (for z.) by
0.5 log, 0 (-log.P) coordinates.) g
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I
I
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3 An = n/n . (3.19)

3 Similarly. since K is approximately the average energy in a background sample relative to that in

an impulsive sample. it can be estimated as

Kn K Z Ljz21 n' 72~ (3.20)

I These estimates will be referred to as the threshold comparison estimates of A and K. Note that

3 for values of A 3 10- 1 and .10- . A n is simply the probability value corresponding to the

point where the sharp rise in the sample distribution begins, and for values of A < 10-1 or

3 r> 10-3 . An is simply the value of P where the sample distribution begins to depart, observably,

from its straight-line (Rayleigh) behavior. (The threshold comparison estimator is based on

I Middleton's approximate empirical procedure. which is described in [10].(11]. We find that the

i threshold comparison estimator is computationally easier to implement and leads to more accurate

results than the approximate empirical procedure.)

In order to assess the performance of the above estimator, an extensive simulation study was

performed wherein the normalized sample MSNRE (A n (sample MSNRE)) for the threshold com-

parison estimator was computed for values of A and K throughout their practical ranges. For

3 each parameter pair, the computation was made using 100 data sets, each containing 3000 observa-

tions randomly generated from the corresponding Class A envelope pdf. The values for the nor-

3 malized MSNRE are tabulated in Table 3.9. Note that the threshold comparison estimator performs

very well. In particular. from a comparison of Tables 3.3 and 3.9. one can infer that the threshold

comparison estimator performs significantly better than the MM estimator for moderate sample

3 sizes. Thus. the threshold comparison estimator is a good candidate for use as an initial estimator

in a scheme whereby a solution to the likelihood equation is determined iteratively. The iterative

3 determination of a solution to the LE after initiating with the threshold comparison estimator will

be referred to as the Threshold - Comparison ILikelihood Estimator. Let us examine the perform-

I ance of this estimator.

I
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Table 3.9. NORMALIZED MSNRE FOR THRESHOLD COMPARISON
ESTIMATOR (3000 SAMPLES, 100 RUNS)

K 10-2 10- 3 10-- 10- 5  10-6

10-2 2.3885x10 2  2.1233X10 2  2.1253X10 2  2.1332X10 2  2.1310X10 2  3
10- 1 1.0812X10 2  3.7563X101 3.3097x10' 3.2785x10' 3.2810x10'

1 7.7198X10 2  7.4617X10 2  8.1020X10 2  8.1468X10 2  8.1504x10 2  I

I
Table 3.10. NORMALIZED MSNRE FOR THRESHOLD-COMPARISON/LIKELIHOOD

ESTIMATOR (3000 SAMPLES. 100 RUNS)

K 10- 2  10 - 3 10- 10-5 10-6

10-2 1.1841x10 2  9.2304X10' 8.7421X10' 8.8302x10 1  8.8320x101 3
10-1 1.2818x101 1.1732X10' 1.1723X10' 1.1747X10' 1.1736X101

1 6.5348 5.1473 5.3332 5.2676 5.2281 3
As before, a simulation study was performed wherein the normalized MSNRE for the 3

Threshold-Comparison/Likelihood estimator was computed for a range of A and K values.

Again. the computation for each parameter pair was made using 100 data sets. each containing 3000

observations. The results are tabulated in Table 3.10. We noted above that the threshold corn- 3
parison estimator performs very well. However. a comparison of Tables 3.9 and 3.10 reveals that

the Threshold-Comparison/Likelihood estimator performs even better. In particular, for A = 1, 3
there is a reduction in the normalized MSNRE on the order of 102 for all values of K under con-

sideration. Moreover, a comparison of Tables 3.8 and 3.10 indicates that the normalized MSNRE I
for the Threshold-Comparison/Likelihood estimator is very close to the Cramer-Rao Lower Bound 3
for all values of A and K under consideration.

I
I
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In addition to computation of the normalized MSNRE. the relative biases for the threshold

comparison and Threshold-Comparison/Likelihood estimator were computed (3000 samples, 100

runs) (see Tables 3.11, 3.12). Note that, in addition to lowering the MSNRE, the likelihood itera-

tion step also serves as a bias reduction technique for most values of A and K. In particular. a

substantial reduction in the magnitude of the relative bias is observed for A = 1 and A = 10-1 for

all values of K under consideration.

Table 3.11. RELATIVE BIAS FOR THRESHOLD COMPARISON
ESTIMATOR (3000 SAMPLES. 100 RUNS)

N K 10-2 10 - 1 10 - 4  10 - 1 10--6

10-2 -2.0086x10-1 -3.4793x10 2  -9.5308x10- 3  -1.3236xi0- 2  -1.2456x10- 2

310-1 _ -2.3777x10-1 -1.0400x10 - 1  -8.8897x10- 2  -8.7665X10- 2  -8.7864x10- 2

1 -7.0614x10-' -6.9930x10 - ' -7.3395x10-' -7.3603x10-' -7.3620x10-'U
Table 3.12. RELATIVE BIAS FOR THRESHOLD-COMPARISON/LIKELIHOOD3 ESTIMATOR (3000 SAMPLES, 100 RUNS)

K 10-2  10-3 10-4 10- 5  1--6

10 - 2  -3.9698X10 - 2  -4.3362X10- -4.1480XI0 - 2  -4.0226x10 - 2  -4.0494XI0 - 2

10-1 7.77.54x10- 3  8.0087X10 - 3  8.1027X10 - 3  8.0989X10- 3  7.9131X10- 3

I 1 1.1470x10 3  2.0072x10 -3  1.4641x10- 3  1.4592x10 - 3  1.1912x10 - 3

I
In summary of the above, the Threshold-Comparison/Likelihood estimator has many desir-

3 able features: (i) it performs very well from a practical viewpoint (substantially better than

MM-based estimators): (ii) the normalized MSNRE for the estimator is very close to the CRLB;I
I
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and (iii) it serves as a bias reduction technique. Unfortunately. the Threshold-

Comparison/Likelihood estimator apparently lacks the asymptotic optimality properties of the

Moment/Likelihood procedure. In fact, it appears from examination of the properties of the popu- 3
lation distribution function that this estimator is asymptotically biased and inconsistent. However.

as we have seen. it works quite well for moderate sample sizes, and thus is an attractive estimator I
for use in applications. 3
3.5. Conclusions I

In this chapter. we have proposed and investigated several batch estimators for the parameters

of the Middleton Class A noise model in its strictly canonical form. These estimators include the 3
method-of-moments estimator, which is computationally attractive but is unattractive in terms of

performance; likelihood-based estimators, which are potentially efficient but which have undesir-

able computational properties; and the Moment/Likelihood estimator which, in its asymptotic 3
performance, combines the desirable features of these two approaches. In response to the poor

moderate-sample-size performance of the Moment/Likelihood estimator observed via simulation, a 3
similar estimator that initiates likelihood iteration with the threshold comparison estimator has

also been considered. Analysis of the moderate-sample-size performance of this scheme shows it to I
be an effective estimator for practical use (i.e.. sample sizes on the order of i03). 3

I
U
I
I
I
I
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3 4. RECURSIVE IDENITIFCATION

3 4.1. Introduction

3 In Chapter 3. we addressed the problem of basic batch estimation of the Class A parameters.

In this chapter. we will develop a recursive algorithm for on-line identification of these parameters.

3 In particular, our objective is to provide a global recursive estimator of the parameters of the Class

A model which performs well for all parameter vectors in the parameter set of interest. We begin

I by proposing a basic, physically-motivated, decision-directed algorithm. This decision-directed

scheme is based on an adaptive Bayesian classification of each Class A envelope sample as being

either impulsive or background. As each sample is so classified, recursive updates of the estimates

3 of the following three quantities are obtained: the second moment of the impulsive component of

the interference envelope density, the second moment of the background component of the interfer-

ence envelope density, and the probability with which the impulsive component occurs. From these

estimates, estimates of the parameters of the model are readily obtained, since closed-form expres-

sions for the parameters exist in terms of these three quantities. Examination of the performance

3 of the proposed estimator via simulation reveals two major shortcomings of the scheme, which

adversely affect its performance even in a local setting. However, by appropriately modifying the

3 basic algorithm and imposing the necessary restrictions on the form of one of its initiation vectors.

a global recursive estimator of the parameters of the Class A model with excellent performance

I characteristics can be obtained.

3 The chapter is organized as follows. In Section 4.2, the basic decision-directed algorithm is

developed and its performance examined. Via a probability-of-error analysis, it is seen that the

3 degradation in the performance of the algorithm arising from its two basic shortcomings can be

alleviated if the necessary restrictions are imposed and the appropriate modifications are incor-

porated. Consequently, in Section 4.3, an initiation procedure for each parameter which yields ini-

3 tial estimates of that parameter satisfying the necessary restrictions is presented. Upon using the

estimates obtained from these procedures as initial estimates of the parameters, a modified versionI
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of the basic aigorithm is then proposed which incorporates the modifications suggested by the two 3
flaws of the algorithm and some additional modifications which are deemed necessary for improv-

ing its performance in a global framework. In Section 4.4. the moderate-sample-size performance

of the modified algorithm is explored extensively via simulation. From these simulations, it is seen

that the proposed global decision-directed scheme does, in fact, provide a global estimator of the I
parameters that performs very well for all parameter vectors in the parameter set of interest. Some 3
concluding remarks are contained in Section 4.5. U
4.2. A Basic Decision-Directed (BDD) Algorithm

The problem of recursive estimation of the Class A parameters from an independent sequence |
of Class A envelope samples will now be considered. The procedure which will be proposed in this

section is a recursive version of the Threshold-Comparison estimator, which was seen in Section 3.4

to provide good estimates of the parameters. The objective in the batch scheme and its recursive 3
version is optimally to discriminate between background and impulsive samples. the optimality

criterion being minimization of the probability of an incorrect classification. Given that the sam- -
ples can be so classified, accurate estimates of the parameters can then be obtained. Of course, the

optimum decision statistic in this case is given by the likelihood ratio test (LRT). Fortunately, as I
will be seen later, for each parameter vector in the parameter set of interest, the likelihood ratio

(LR) is strictly monotone increasing in the envelope sample. Thus. to each parameter vector in the

parameter set of interest, we can associate a unique threshold so that, for a given observation, the 3
LRT is equivalent to comparing that observation to this optimum threshold. The problem of

optimum discrimination of the samples has then been transformed to the problem of locating the I
optimum threshold corresponding to the true parameter vector. This is what the proposed algo- I
rithm attempts to do.

4.2.1. Formulation of the algorithm 3
The proposed recursive scheme is a basic decision-directed (BDD) algorithm based on an adap-

tive Bayesian classification of each of a sequence of independent Class A envelope samples as

U
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5 background or impulsive. The mathematical formulation for the algorithm is given as follows:

Let w. denote the unnormalized Class A envelope pdf, i.e..

..

2~

The parameter cr2, the second moment of the interference envelope, was assumed to be unity in the

previously considered batch estimation problem. since, in a batch setting, the data can be easily

3 normalized to have unit second moment. As stated in Section 3.4, we can decompose the Class A

envelope pdf w, into two components. The first of these corresponds to the m = 0 term and the

3second corresponds to all terms indexed by m >: 1. i.e..

00m2 2 2 -

2-A A z/o

2ez >Oe

= (1-r 1 )po(Z) + irip1 (z)

Iwhere

-A
I 1 1-e (4.2a)

and 0-e 0.2(2b212- 222/oo-

P(2Z) z - e . (4.2b)

2 _ 2 z
~and

2 e- A m _Z la 47
p,(z) _ - z e (4.2c)

IC O l =1 Ml I CTOM

In the sequel. p 0 will be referred to as "the background component of w." and p as "the impulsive

I
I
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component of w. "' Thus. Class A envelope samples attributable to po will be referred to as "back- 3
ground samples" and those attributable to p , will be referred to as "impulsive samples." Let oYB

denote the second moment of w. conditioned on the event that p 0 occurred, and let a-2 denote the I
second moment of w, conditioned on the event that p I occurred, i.e., 3

Sfz 2 po(z )dz and cr 2 Z 2  1(z)dz (4.3)

From (4.2a)-(4.2c) and (4.3), we then have that

ri = 1 -e (4.4a) 3
2 ¢2 A K

IA K I (4.4b)

and I

S2 = 0.2 1 A+(4.4c)
I rl(A + K)

These equations can be readily inverted to yield unique. closed-form expressions for the parameters

of the Class A model in terms of ir,. o'4 and o,. Specifically. 3
A =-ln(1-ir) , (4.5a)

__ __ __ I
K in (I - i rd 2 _ 2 (4.5b) m

and 3
0" (1- r) o_ + .o.2 (4.5c)

for all (A.K.cr 2) EA'.whereA' 9{(A.K, o 2):(A.K ) r EAand 2 > 0}.

t That p a can justifiably be referred to as the "background component of w * follows from the discussion given in 3
Chapter 2. Furthermore, since p I is primarily attributable to the impulsive component of the input noise and, since the vari-
ance of pI is significantly larger than that of p 0 for parameter vectors in the parameter set of interest, p , can also justifiably
be referred to as "the impulsive component of w." Again, this terminology is consistent with that given, e.g., in [16]. 3

I
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Given that we can distinguish between envelope samples attributable to the background com-

ponent of w., and those corresponding to the impulsive component, then, based on the definitions

of E. , 011 , and ir i , we can use as estimates of these quantities the sample second moment of those

3 samples classified as background. the sample second moment of those samples classified as impul-

sive. and the frequency with which the impulsive samples occur, respectively. From these esti-

Imates, we can then obtain estimates of A . K. and a, using the relations given in (4.5a)-(4.Sc).

Since the classification of each sample as "impulsive" or "background" can be performed using a

likelihood ratio test based on that sample and on the estimate of (A , K. ar2 ) obtained at the previ-

3 ous iteration of the algorithm, we are now in a position to propose the following decision-directed

recursive scheme for estimating the parameters of the Class A model, wherein an adaptive Bayesian

3 classification of each sample as impulsive or background is performed:

Basic Decision-Directed (BDD) Algorithm

Step 1 : Choose the initiation vectors. Choose (i 1 (0). Qr(0), i (0)) arbitrarily and

0. ) E A'. (A tilde above a given quantity denotes the estimate of that quantity for the

2 2iteration shown after that estimate either parenthetically, when estimates of 7r i , 0., or rJ. are

being considered, or as a subscript, when estimates of A. K. or or2 are being considered. Note th4t

we are considering estimates of 2r,0.7 instead of a'? since a always appears in conjunction with

in the expressions for the parameters given in (4.5a)-(4.5c).) The initiation vector

I (4'(0). o 2(0). 'r 2(0)) is chosen arbitrarily since. as will be seen from the form of the update

3 equations given in Step 3. the performance of the algorithm is independent of this choice. At the

n-th iteration (n ; 1). we have the estimate vectors (i 1 (n -1), &'(n -1), V 0-, (n-1)) and

I -1 . °T.-) and we observe the n -th sample Z,.

Step 2: Classify Z, as an impulsive sample or as a background sample using a likelihood ratio test

based on the estimate of (A. K, Cr2) obtained at the (n -1)-st iteration.

I
I
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Let

1 if f( . .(z, _-) > 1

0 if f (ZA;'.i',,_ . , o,-_ ) ( 1

where f is the likelihood ratio function normalized so that the threshold of the LRT has unity

value, i.e.. I
f U:;A. K. "2)  0 -e-,p~; .a)z > 0,

e-A po(z;AK. o 2)

Z2 A I I (4.6)
A- K 0 .2mX 0'-; ! e z K0

and where 

1

I =P- Z is classified as an impulsive sample,

, =0 => Z, is classified as a background sample.

(The functions po and p , have been defined in (4.2b) and (4.2c). respectively. Here the dependence I
of these functions on the parameters is made explicit.) In the sequel, the function f will be

referred to as the normalized likelihood ratio (NLR) function.

Step 3 : Update recursively the estimates of Ir,. oB, and 7r 1 0. (These three parameters will be

referred to as the update parameters.) : For n I> 1, let

1
i(n) = i(n -I)+ 1- (q5.- 4(n - ))(4.7a)

n I
2_ 1)_ 2 2I-Bn- +(Z4 r -(n -- 1) if 1' (--0) 0

2r(n) =(4.7b)

&Sn -1)if ' 11 ) 0

I
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and

1 2II (n) = _: n n _ - :c ( - (4.7c)
nt

Note that at the first iteration of the algorithm (n = 1), execution of this step results in cancellation

of the terms involving the initial estimate of ir in (4.7a) and those involving the initial estimate of

2Ii o, in (4.7c). Furthermore, at the first iteration n' of the algorithm for which a given sample is

classified as a background sample. the first portion of (4.7b) becomes effective and execution of thisI 2

step results in cancellation of the terms involving the initial estimate of 2"5 in this portion of

(4.7b). Since, as will be seen in the next step of the algorithm, the classificiation of each sample as

background or impulsive depends only on the value of the initiation vector (A0. K0 , &) when

n '. ', it follows that for a given sample sequence the values of 'i(I), & '(n). and i"7(1) are

unaffected by the choice of (T'r(O), o 2(0). _io2 (0)). Moreover, the estimate of each update

parameter obtained at a given iteration depends on the estimate of that parameter obtained at the

3 previous iteration only. Consequently, for a given sample sequence, initiation vector (A 0. Ko. ~o).

and fixed value of n > n', the estimate vector (Fr(n), "(n). iR% n)) will have the same value

I independent of the choice of the initiation vector (FI(O). 65B)70o, (0)). Thus, as claimed in

Step 1. the performance of the algorithm is unaffected by the choice of the initial estimates ofI2 7,.2.
'r, a-, and 1T02

3 Note, in addition, that the estimates of the update parameters given by recursions (4.7a)-

(4.7c) are motivated entirely by their definitions: For n > 1. 'r 1(l) as given by (4.7a) is simply

the proportion of samples that have been classified as impulsive by the n -th iteration: for
i , -2

n > n', a (n) is the sample second moment of those samples that have been classified as back-

ground by the n -th iteration: and lastly, for n > 1, vilt (n) is the proportion of those samples

3 that have been classified as impulsive by the n -th iteration times the sample second moment of

those samples.

II
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Step 4 : Obtain estimates of the parameters of the Class A model. First, let

and let n* denote the minimum value of n for which crn is nonzero. Then, for n < n*. set
K2)n.. n-) For n >- n* , obtain estimates of the Class A parameters in

terms of irl BT. and ir~a, using the expressions for these parameters given in (4.5a)-(4.5c):

~I

K,, In (1--rm)]-(.b
1;',cr) (nAr,(n (

and

S(1n- i()) 2(n + ,,--,(n) (4.8c)

(Note that (4.8a)-(4.8c) do not yield valid estimates of the parameters for n < n* .) I
Step 5: Constrain . ) to lie in the parameter set of interest. First, extend the boundary

of A' slightly (by a factor of 1.1) in two of its coordinates to obtain the following set A contain-

ing A:

A 1(AK._2: 9.O9 X101 3<A 1.1 9.9X 10- 7  K 1. X 02 _ >J .

Secondly. let 3
A-9.59X1O'.

1 ~9.9 X10-7.3

Thirdly, modify (A. K,,. & 2') as follows to obtain the constrained (to lie in A*) estimate

(X, k, a) of (A. K. oa2) for the n -th iteration: 3
I
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I if I3 I, >. o

(1- ma9 {sg 6X o})(9. 10-3 f A1 (4.9a)
+(1 -max sgn A . }(1.1 ) if Alp' < 0

|~ n,

2w =  (1 max {sgn p 3 0}(9.0- X 10-7 ) (4.9b)
(1 - -p 4, 0)•o)(1.1 X 107 )  if PIP,3 < o0

I 2 -2

So .(4.9c)

Now. = (K ). then execution of this step is complete. However, if

A, . (A4, . K, . 'n). then proceed as follows: Using the inverse relations given in

(4.4a)-(4.4c). modify r,(n). (n). and 7rcF, (n.) at the n -th iteration to reflect the above changes

in the estimates of the Class A parameters. This modified estimate will be denoted by

(1(n CB (n). _(n)):

I - (4.10a)

-~~~ (n)?i = --e (4.A

-2 2

* and

Fl-2(nn ) = 1,
& n f- ,() . & lo-2 n

Finally. set ('i(n) B(n ) . 7 (n) = ( a
2. ) = ( X . -2 0 ) .

The steps of the basic decision-directed algorithm are now complete. From a graphical stand-

point, this is what the BDD algorithm attempts to do: Let (A . K. o' 2) denote a oarameter vector in

A' with corresponding envelope pdf w. as shown in Fig. 4.1. Now, for each (A. L, z2 1 E A',

I
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I
I

wn, (z) Main Lobe of wn,,, Tail of w...

ii -- - -

,, I

0 r- (Optimum Threshold) i

Fig. 4.1. Envelope pdf for typical parameter vector (A K. K -) in A' 1

I
I
I
O
I
I
I
I
I
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f (z; A. K, 02) as defined in (4.6) is a strictly increasing continuous function of z. with

limf (z;A,K.O- 2 ) < l and lim f (z:AK,0Z 2)=co. Thus, for each (A,K,&2) E A', there
- (A, L_, E2) - 0 ( A K ). , , 1. texists a unique ' Op E (0. co) for which f rA K, 2 1 It then follows that for

3 each (a . K. 02) E A', the corresponding likelihood ratio test for a given observation is equivalent
"(a, 1. 0.2)

to comparing the given observation to the optimum threshold o .t - i.e., the decision regions

which minimize the probability of error in the classification process for each ( A. K. .2) E A' con-

sist of the intervals (0, r(A. 1. E2)) .(r (A. 1_ E2) , co). (If the observation lies in (0. T,

classified as a background sample. whereas if the observation lies in " ( "i co), it is classifiedlopt -

as an impulse.) Consequently. since (A. K, cr2) lies in A', we can associate with the parameteri ,02 (A, j', a.2)

vector (A, K, 0 "2) the optimum threshold (.P. in the manner just described. Similarly. since

the sequence of estimate vectors (A4,, K", & 2) of the true parameter vector (A. K, .0 "2) lies in A',

we can associate with this sequence of estimate vectors a corresponding sequence of threshold esti-

( i K &2)

mates 7O"t Implicitly, via this sequence of threshold estimates, the BDD algorithm
(A. X', c"2)

attempts to locate T.p and, hence, the corresponding optimum decision regions

(A,. a2)K (A ° ).,
(opt I .(Top . . In so doing, it can then, with minimum error probability, discrim-

inate between those samples corresponding to the main lobe of the envelope pdf and those

corresponding to the tail of the pdf (see Fig. 4.1). Given that the background samples (those

corresponding to the main lobe of the envelope pdf) can be optimally discriminated from the

impulsive samples (those corresponding to the tail of the pdf), accurate estimates of the Class A

3 model parameters can then be obtained.

3 We see then that the BDD algorithm is physically motivated, easy to implement. and is a

recursive version of a batch procedure which is known to provide good estimates of the parameters.

3 In the next section. we will examine the performance of this BDD algorithm.

I
I
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4.2.2. Performance of BDD algorithm 1

The behavior of the BDD algorithm has been examined for an extensive range of true parame-

ter vectors (A . K. 0.2) E A' and an equally extensive range of initiation vectors (A 0, o, 0 . &o 2 ) E A' I
for each true parameter vector. A few major difficulties have been observed, these difficulties being

equally apparent when 0.2 I and o', is fixed to have unity value for all n > 0. Thus, for the

sake of simplicity, we will now cite these difficulties as they pertain to the situation when 3
, =- 0.2 = 1 (n > 0). We note that 0-2 is taken to have unity value since the absolute value of c.2

has no bearing on the estimation problem at hand (see Appendix A).

Drawbacks of BDD Algorithm I
(i) For values of A close to 10- 2 and arbitrary values of K. the convergence of the BDD algo-

rithm to the true parameter vector is sensitive to the distribution of impulses over values of

n < 0 (500). That is, despite the fact that the algorithm may correctly distinguish between 1
impulsive and background samples in its initial stages, if the percentage of impulses over the

sequence of samples classified correctly exceeds the expected percentage (which. e.g.. would be I
0.995% for A =10 - 2 since, for A =10 - 2.2 , = - 1 -e - A = 9.95 X 1073). then, with significant

probability, the algorithm will not converge to the true parameter vector. Furthermore, for

fixed A . the frequency with which the algorithm does not converge to the true parameter vec- I

tor due to its sensitivity to the distribution of impulses increases with increasing K, becoming

relatively high for values of K close to 10 - . I

(ii) For values of Io A o / 0  
> r, the frequency with which the algorithm converges to the true 3

parameter vector is relatively high. whereas for values of ro < r. the frequency with which

the algorithm converges to the wrong parameter vector is relatively high. The former portion

of this statement is not valid for values of A close to 10 - 2. since, as explained in (i), the dis-

tribution of impulses forces the algorithm to converge to the wrong parameter vector for a

significant percentage of the runs when A is close to 102. Moreover, for values of A close to

1. the frequency with which the algorithm converges to the wrong parameter vector once I
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again becomes relatively high for values of ro O ( 10-). Thus, even when the set of

vectors from which the initiation vectors are chosen is a small neighborhood of the true

parameter vector, the performance of the BDD algorithm can vary drastically over that neigh-

3I borhood depending on the location of the initiation vector. This highly nonuniform behavior

of the algorithm even when the initiation vectors lie close to the true parameter vector makes

it undesirable for use even as a local tracking scheme.

A careful and thorough analysis of the source of these two shortcomings of the BDD algo-

rithm has been made. and is given in Appendix A. We note here that the ensuing adverse effects on

the performance of the algorithm arising from its two basic drawbacks can be eliminated by plac-

ing certain restrictions on the form of its initiation vector and by incorporating the appropriate

I modifications into its framework. In particular. the following restrictions (on ('Aojo K, &2)) and

modifications must be imposed (the derivation of these conditions can be found in Appendix A):

(RI) A 0 must either provide an accurate estimate of A. or, ' 0 must provide an estimate of A

I for which io0 < A and not less by an order of magnitude or more.

I (R2) Ko must either provide an accurate estimate of K. or. Ko must provide an estimate of K

3 for which io>K and not greater by two orders of magnitude or more.

-22

(R3) o2o must provide an accurate estimate of 02.

(Mi) The estimator of a,2 given by (4.8c) must be replaced by an estimator of o"2 consisting of an

I
update equation for &

(M2) The estimate of A must be fixed to its initial value A 0 in the initial stages of the algorithm.

with only the estimates of K and a 2 being updated.

I In the next section. we will consider a modified BDD algorithm which incorporates

modifications (Mi) and (M2) and whose initiation vector satisfies conditions (R1)-(R3).I
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4.3. A Global Decision-Directed Algorithm

In this section, we will develop a giobal recursive estimator of the Class A parameters by

appropriately modifying the BDD algorithm. First, we will present an initiation procedure for each

parameter which yields initial estimates of the parameter satisfying the corresponding restriction as 3
given in (Rl)-(R3) of the previous section. Then, we will propose a modified BDD algorithm which

incorporates the changes described under (Ml) and (M2) and additional changes which are deemed 5
necessary either for the sake of simplifying the BDD algorithm at a given step or for the sake of

improving its performance in a global framework.

Initiation Procedure for A I

We need to locate an initiation procedure which yields estimates A 0 satisfying restriction 3
(Ri). The search for such an estimator can be decomposed into two steps: (i) First, we will locate

a procedure which provides us wiLh a reasonable estimate of A. (ii) Secondly, we will construct a 3
quantizer whose input is this estimate and whose output is the estimate quantized in the direction

of small A. This quantized estimate will then be used for A 0 . By decomposing the search in this

manner, the determination of a procedure which yields initial estimates of A with the desired

property is greatly simplified.

Let us focus our attention on the first step: Which estimator will provide us with a reason- I
able estimate of A? One procedure which suggests itself from the batch estimation problem dis-

cussed in the previous chapter is the method of moments. It was seen in Section 3.2 that the MM

estimator based on the fourth and sixth moments was highly inefficient in estimating the parame- 3
ters of the model. However, this high inefficiency was due to the insensitivity of the moments to

changes in the parameter K. In fact, the computed asymptotic variances for the normalized MM I
estimate of A (given in Table 3.1) suggest that a relative error in the estimate of A on the 0 (10- 1)

can be attained using the MM estimator if a samnle size of 10000 is used. Thus, given the many

2 The computed variances were based on the assumption of a fixed envelope second moment. However, they should not

change significantly when the second moment is unknown since, as will be seen in the sequel, the sample second moment is
extremely accurate for 10000 samples.

I
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3 desirable features associated with the MM estimator, among which are its recursivity and compu-

tational expediency, we will use the MM estimator based on 10000 samples to obtain a reasonable

I estimate of the parameter A.

3 In some cases, the estimates of A obtained via the method of moments may exceed the true A

by a significant amount. Unfortunately, restriction (R1) does not admit such estimates of A for

A 0  Thus. instead of using the MM estimate of A for A 0 . we will instead use a quantized MM

estimate of A. wherein the MM estimate of A is quantized in the direction of small A.

Let m 2 1 M 4. and m 6 denote the second-order, fourth-order, and sixth-order sample moments.

respectively, of a sequence of 10000 independent. unnormalized Class A envelope samples and let

AM, w denote the MM estimate of A based on these moments. Then, (see 3.3a).

2(M 2) 1
AMM = 2 (4.11)

i 6(M2 ) 3  2(rM2)2

3 Furthermore, let EA (A. K) denote the asymptotic variance of the normalized MM estimate of A

based on the fourth and sixth moments, the expression for which was derived in Section 3.2.3.

3 Consider the following simple quantization scheme:

I (i) Divide (-co , oo) into the subintervals (-co, 1.1 x 10-2). [Aj . A max) (1 K j < 990), and

[A max .o), where

A j 10- + 10 -  (4.12a)

* and

Almax 4 Ai + IEA (A j .10 2 ) 1/2

I A~m ~ A A~ + f EA10000 xA 41b

I
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10- 2 if Amm E (-oo. 1.1 X 10 - 2 )

A 0 = [ mm Aj j - 10 -3  ifAmm 6 [1.1X 10 -2 ,Aax)
4 4 9 " __ (4.13)

s.t. (Ai Aj ffma)(AMM)=1 

1 if AMM E[A99x.oo)

where IB denotes the indicator function of the set B. I
Note that Aj m ax is an upper bound which, in the worst case, is correct approximately 85% of 3

the time (based on a Gaussian approximation for the distribution of AMM; see Section 3.2.2). Thus.

the above quantization scheme achieves the goal of quantizing toward smaller values of A without 3
undue distortion. This statement is further supported by simulation results wherein the proposed

initiation procedure was in fact seen to yield estimates 0 o satisfying restriction (R1). (Note that

the quantization scheme must be independent of the parameter K since K is unknown. Now, from

Table 3.1. it is evident that for fixed A and arbitrary K , eA(A ,K) is largest for K = 10 - .

Thus, the choice of K = 1072 in (4.12b) yields the most conservative bound.) 3
Initiation Procedure for K 3

We need to locate an initiation procedure for K 0o which satisfies restriction (R2). Again, we

decompose the search for such a procedure into two steps: First, we will locate an estimator which

yields an estimate of K which differs from K by less than an order of magnitude. Then, we will 3
multiply this estimate by a factor of 10 and use the resulting value for Ko. In so doing, we will

obtain values for Ko which satisfy (R2). 3
Now, we need an estimator which will approximate K to within an order of magnitude. It

was seen in Section 3.4 that estimators which correctly distinguish between impulsive and back-

ground samples provide good estimates of the Class A parameters. Moreover, it was seen in our 3
earlier discussion that correct discrimination of the samples involves the determination of the

optimum threshold corresponding to the true parameter vector. Thus, by considering a recursive 3
U
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version of the Threshold-Comparison estimator (given in Section 3.4) which utilizes a simple.

heuristic scheme for approximating the threshold, perhaps we can obtain an estimator which yields

estimates of K having the desired property. With this in mind, consider the following initiation

1 procedure for obtaining o :

Let Z. 99,Z9 8 , ... Zo, Z 1 ..... Z 2ooo denote a sequence of 3000 independent Class A

envelope samples.

3 Step 1: Choose (5(0), &.(0) , y"' 2(0) ) arbitrarily and let

3 X 0  max{Z" ,....Z o}

Yo A min {Z.-9,..., Z0}

I Step 2: For 0 < k K< 1999, update the threshold Tk using the following system of equations:

I,~ e* = (Xt Yk ) 1/2

x k+1= Xk + k X(Zk+I rk [Zk+I- Xk]

[E X_ ( ZI+I - T ) + I

1 1- X,(Zk.+,- k)]5 Yk+1 =Yk + k [Zk+l- Yk]

[( (1-X(z,+4 - Ti)m + 1

where

IX(x)= 1 if X ><0

3 and

X( Zk +1 - )= 1 Zk +1 is classified as an impulsive sample,

X( Zk +1 - ik) = 0 Zk +1 is classified as a background sample.

I
I
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Step 3: For 1000 -4 k K, 1999. update recursively the estimates of -y, °v2. and yo_,2:

1

5(k-99)= k-100) I X(ZkI- Tk) - (k-1000)I (4.14a)
--999) - j( k -k1000) +k -999 3

-o)+if ( 3-X(z+-,));o
(1-X(Zk+l- Tdk)) 2  

-

k Zk 1 '.k 100

0".(k- 999) 1 =o00 (4.14b) I
-2

o(k-1000) if (1-X(Z,+1-T'))=0.
I =1000

andI

;"orb(k - 999) = "o'(k - 1000) + (

1 [,( zk+l- ' ) Z2+ - (k- 1000)41 4.
k -999 lt' +

Steg 4: Compute ko as follows:

First. let m

K = [-li (1 - 5(1o0o))] YG_(10oo) (4.15)b 51o00) - 2 (lOOO)

Then, let l

Finally, 
take

10-2 if K** > 10
-2

Ko- K** if K** E [10 -6, 10 2] . (4.16)10"-6 if K** < 10 -6 l

I
I
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3 This initiation procedure attempts to locate the optimum threshold corresponding to the true

parameter vector via the sequence of threshold estimates rk. Note the simplicity of the scheme

I used to approximate this optimum threshold: X is the average of X0 and the values of those sam-

ples classified as impulsive by the k-th iteration: Y& is the average of Yo and the values of those

samples classified as background by the k-th iteration; and Tk is simply the geometric mean of

3 these two quantities. Note, moreover, that (4.14a)-(4.14c) are based on the update equations for

the BDD algorithm given in (4.7a)-(4.7c) and that the relation for K* given in (4.15) is obtained

2 - 2.I using relation (4.8b). (The interpretation of the update parameters y. oa, and ,o'. is the same as

2 2that for the parameters Irl, o,. and irlo ,. respectively.) Now, simulations reveal that for values

of the true parameter vectors for which X 44 10" 4 , K* approximates K to within an order of

3 magnitude. However, even though K* is less than K by less than an order of magnitude for

parameter vectors for which K > 10' 4. K* sometimes exceeds K by more than an order of magni-

3 tude for these parameter vectors. But, by multiplying K* by a factor of 10. constraining the

resulting value to lie within the set of allowable values for the parameter K, nrid using this con-

strained value for Ko, it is seen that estimates Ko which satisfy restriction (R2) are obtained.

I Initiation Procedure for o 2

For & 2. we wili use the sample second moment of those samples used to obtain AMM. Let m 2

be defined as above. Then, we shall take

o-2 (4.17)

Simulations have shown that the sample second moment based on 10000 samples yields accurate
-2

estimates of the envelope second moment. Thus, estimates oo obtained using (4.17) do, in fact.

3 satisfy restriction (R3).

3 The descriptions of the initiation procedures for the parameters are now complete. We will

now determine the changes in the BDD algorithm induced by (M) and (M2). First. consider (Ml).

I Since & 2 is the sample second moment of a sequence of 10000 Class A envelope samples. the

I
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estimator of ar2 given by (4.8c) will be replaced by the following update equation for this sample I
second moment:

-2 -2 1 2  -2 1
0 'n "n-1 +- + - ( Z ,, n-i ' n > 1. (4.18)

n + 10000

Now, consider (M2). Let n denote the last iteration for which the estimate of A is fixed to its 3
initial value A. o . Then, for n - n, . the estimator of A given by (4.8a) must be replaced by the

following estimator:

A" = A • (4.19) 5
Now. from (4.5a) and (4.5b). note that

-,, A II_ 02 2

Thus, for n I< n.. the following estimator of K can be used:

we f i i ) 2 (4.20)1-e-A _i c(n) - o-B(n)

2 2

where the update equation for (rB is given by (4.7b) and the update equation for 2r is given analo-

gously as follows : I

2(n-1) + (Zn2 -_ i(n--1)) if 

211 o':(n) - .(4.21)

n
- if,= =

(r,(0) E A. (If n' is defined to be the first iteration for which a given sample is classified as impul- I
sive. then for n > n", &r(n ) is simply the sample second moment of those samples classified as

impulsive by the n -th iteration.) Note from the estimators of the Class A parameters given in 3
I
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2 2

(4.18)-(4.20) that only the estimates of the two update parameters o, and o., are required when

2 2

update parameters 0a and or. will be used when n < nf.

We are now in a position to present the following modified BDD algorithm which incorporates

the above modifications and some additional minor modifications.

4.3.1. Modified BDD (MBDD) algorithm

Step 1': Choose the initiation vectors. Choose (2(0) . 2(0)) arbitrarily and obtain

(Ao o .&2) using the initiation procedures described above.

Step 2': Classify sample as impulsive or background. Since m -> 1 in (4.6) and

10' < K < 10 2 . it follows that m + K m. Using this approximation for (m + K) in (4.6).

classify Z,,. n > 1. as an impulsive sample or as a background sample using the following

I simplified test:

3 Let

- -2

0 if g(A.-..-j.- 1I

where

1/2
I I1

I (A kI K l1J

and where

n r = 1 Z, is classified as an impulsive sample.

= 0 Z. is classified as a background sample.

U
I
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Step 3': Update recursively the appropriate update parameters. 3

2 2

(a) For n -< n, update recursively the estimates of oa and o2 using (4.7b) and (4.21), respec-

tively.

2 2/1" sn 47) 47) n
(b) For n > n. update recursively the estimates of I 1 , aa ' and ia, using (4.7a). (4.7b), and

2 2(4.7c), respectively. Note that these update equations require estimates of ir. c-E. and 7trio
2 -2 I

when n = nfI Since -B is an update parameter when n < n, B ( nf) is available. Fur-

thermore, using relations (4.4a) and (4.4c), estimates of ir1 and 7r10-. at the n1 -th iteration

can be obtained as follows:

i(n) = - en-A, e -A

2 A2 + 4r,(nf)~ & 2 io +(1 eAO0) kn,
7r (/. n f2

An fI+ Kn I A 0 + Kn

Step 4': Obtain estimates of the Class A parameters.

Let an and n* be defined as in Step 4 of the BDD algorithm. 3
(a) Forn < n*.obtain - 2 using (4.18) andset(A4.kn) = (, n-1..

(b) If n* n 1 , then for n* 4 n < n , obtain estimates for A K, and 0-2 using (4.19), (4.20),

and (4.18). respectively.

(c) For n > max (n.f n - 1), obtain estimates for A, K, and o2 using (4.8a), (4.8b), and

(4.18), respectively.

Step 5' : Constrain estimates of Class A parameters to lie in parameter set of interest. 3
1 2 3 4Define A*. O3n, On, on . and 3n as in Step 5 of the BDD algorithm.

(a) For n K, ni. constrain (,, , and (T. using (4.9a). (4.9b). and (4.9c), respectively. ( Let I
A K and -2 denote the constrained estimates. ) If (AX) - 2 02). then

execution of this step is complete. However. if (U. 2 ) ; (,n , ~ 2). then proceed as

follows : Using the relations given in (4.4a)-(4.4c). modify & 2( n ) and 2( n) to reflect the

I
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3 change in the estimates of A. K. and C 2 induced by the constraint. (Let C9( n.) and 7( n.)

denote the modified estimates. ) :

FT2 + (n) eA )- 2 -2 Ao+(_Ao)K
(1-,-  .  ++) +t A) +

-2 2 +2 + -

Finally, set or(n) o'(n ) _ ( n)2( y/, /( n )and (,in, if., o).(n,.k~- , -2).

3 (b) For n > n, , proceed as in Step 5 of the BDD algorithm.

3 The description of the MBDD algorithm is now complete. Experimentation has shown that

setting n. to 1000 eliminates the difficulties associated with not fixing the estimate of A in the ini-

3 tial stages of the algorithm, without unduly slowing the convergence of the algorithm. Moreover.

extensive simulation of the MBDD algorithm (with nf = 1000) has shown that convergence of the

algorithm is essentially attained within 5000 iterations (i.e.. the relative variation in the estimates

3 of the parameters from iteration to iteration for iteration values ,near 5000 is very slight) and that

good estimates of all parameter vectors in the parameter set of interest can generally be obtained

3 for this iteration value. Occasionally. however, for values of A -- 0 (> 10-1) (K arbitrary). the

estimate of A can be somewhat low. Furthermore, for these values of A and values of

K - 0 (> 10-4), the estimate of K is occasionally high. This problem can be easily remedied by

3 noting the following: Even though the estimate of A is low and that of K is high. these estimates

are closer to the true values than those given by A 0 and K 0. Thus, by restarting the BDD algo-

rithm with an initiation vector consisting of these estimates of A and K, better estimates of the

parameters can be expected. Now, it was noted that the convergence of the MBDD algorithm can be

attained within 5000 iterations. However. even after the 3000-th it. ation, the variation in the

estimates of the parameters is only slight. Thus. the BDD algorithm can equally well be restarted

with the estimates of A . K. and o-2 obtained at the 3000-th iteration. With this in mind, consider

I
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the following modification to the MBDD algorithm: 3
If the estimate of A at the 3000-th iteration exceeds 10-1. then introduce as a second estimate

of the update parameter r, the proportion of samples classified as impulsive after the 3000-th I
iteration. Denote this second estimate by 7r 1. At some iteration n max > 3000 (and for all itera- 3
tions thereafter), obtain the estimate of A using relation (4.5a) and r as an estimate of 7r,.

instead of r. If. in addition, the estimate of K at the 3000-th iteration exceeds 10"4, then also 3
2introduce as a second estimate of o"B the proportion of samples classified as background after the

3000-th iteration and as a second estimate of Trlo" the proportion of samples classified as impulsive I
after the 3000-th iteration times the sample second moment of those samples. Denote these esti-

mates by o"B and Ir1or , respectively. Then. for all iterations n >,n max, obtain the estimate of K
:Z - =2

using relation (4.5b) and r 1, 2, and 7rio" as estimates of the corresponding update parameters.

Furthermore, for iteration values greater than 3000 and less than n max, obtain the estimates of A

and K using the original estimates of the update parameters. Also, if the estimate of A at the U
3000-th iteration exceeds 10- 1 but that of K does not exceed 10-4, then for n > nM., continue to 3
obtain the estimate of K using the original estimates of the update parameters.

The first iteration value n max I for which the second estimates of the update parameters are 3
used to obtain the estimates of the model parameters, is the smallest iteration value which satisfies

the following two conditions:

(i) There must exist iterations n 1 and n 2 , 3000 < n 1. n 2 K, n max , such that Z I is classified as an 3
impulse and Z, is classified as background since, otherwise, invalid estimates of the Class A

parameters would be obtained.

(ii) n must be greater than 3000 plus an offset 8. specified below as a function of the estimate 3
of A at the 3000-th iteration. For iteration values greaLer than 3000 and less than or equal to

3000 + 8. the original estimates of the update parameters are used to obtain the estimates of I
the model parameters. Consequently, this experimentally determined offset 8 is chosen so 3
that, for iteration values slightly greater than 3000 + 8. I
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(a) the accuracy of the estimate of A obtained using ir 1 is. on the average, higher than

that obtained using r 1 , and,

(b) when the second estimates of the update parameters are used to obtain the estimate of

3 K. the accuracy of this estimate is. on the average, close to or higher than that

obtained using the original estimates of the update parameters.

I Otherwise, it would be more appropriate to continue using the original estimates of the update

3 parameters in obtaining the estimates of the model parameters.

3 By implementing the above modification to the NIBDD algorithm, what is effectively being

done is the following: At the 3000-th iteration of the IBDD algorithm, the BDD algorithm is

3 restarted alongside the MBDD algorithm, using as estimates of the model parameters in the initia-

tion vector for the restarted algorithm the estimates of these parameters obtained from the MBDD

I algorithm at the 3000-th iteration. Then. at some well-defined iteration after the 3000-th iteration

(and for all iterations thereafter), the estimates of A and K obtained from the BDD algorithm are

sometimes used instead of those obtained from the MBDD algorithm. The estimates of the parame-

3 ters obtained from the restarted algorithm are used whenever it is expected that these estimates

will, on the average, and within a moderate sample size, provide better estimates of the parameters

3 than those offered by the MBDD algorithm.

3 The proposed modification to the MBDD algorithm should yield an algorithm which provides

a global estimator of the Class A parameters for all parameter vectors in the parameter set of

3 interest. The steps of this modified MBDD algorithm will now be given.

1 4.3.2. Global decision-directed algorithm

Step 1": Choose the initiation vectors. Proceed as in Step 1' of the MBDD algorithm. In addi-

tion. choose ir (0), 0(0), and irlr (0) arbitrarily.

Step 2": Classify sample as impulsive or background. Proceed as in Step 2' of the MBDD algo-

rithm.I
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Step 3": Update recursively the appropriate update parameters . 3
Let

1 if 300> 01

0 if A 3000 <0.1

I
1 if 003  

> 107'

0 if K 3000 <10 -,3

and3

500 if 0.1 < A 3 00 < 0.2

400 if 0.2 A 30 0 0 <0.3

8= 300 if 0.3< A 30 0 0 
< 0.4

200 if 0.4 4 A 3 00 < 0.5

100 if 0.5 4 A 300 < 1.1

Furthermore, let nt* denote the minimum value of n. n > 3000, for which E 0, where 3
n n

e" ( E 01)( E 1~~ n > 3000.3
1 =3001 1 =3001

(a) For n 4 1000, proceed as in Step 3'(a) of the MBDD algorithm. 1
(b) For 1000 <r n (3000. proceed as in Step 3'(b) of the MBDD algorithm.3

(c) For n > 3000,

Case (i): t=O.
2 2

Continue to recursively update 'IT, &B. and 1Tr o1 using (4.7a). (4.7b), and (4.7c), 1
respectively. I

I
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3 Case (if): A=1 and =0.

(1) For 3000 < n K< max ( 3000 + 8, n** - 1 ), continue to recursively update 4r, '&2, and

1 2
Via, using (4.7a). (4.7b). and (4.7c). respectively. In addition, update recursively the

estimate ir 1 as follows:

1

7(n -3000) 7 (n -3001) + (n -0-7(n -3001)) . (4.22)

(2) For n > max ( 3000 + 8, nz* - 1 ), continue to recursively update the estimates 7r.

& 2 7' . and 7r 1 using (4.7a), (4.7b), (4.7c). and (4.22), respectively.I
Case (iii): g=1 and j=1.

S~ -. 2
(1) For 3000 < n -< max ( 3000 + 8, n** - 1 ). continue to recursively update irk , &, and

r1a1 using (4.7a). (4.7b), and (4.7c), respectively. In addition, update 7T 1 using

(4.22) and update recursively the estimates o" B and i rao as follows:

S2 (1-4) 2 2 n

0"( n-3001)+ (Z"-crB(n-3001)) if Z (I- ) 0

E (i-) 1 =3o01
2, 1=3001

" B n -3000) 31(4.23)

a" Bn-3001) if (1-4)=0

I and 

1 =3001

2 - 000 ) -( n - 3001 ) + (0r - 3001)) . (4.24)
n - 3000

(2) For n > max ( 3000 + 8, n** - 1 ), continue to recursively update the estimates

3" B, and off o1 using (4.22). (4.23). and (4.24). respectively.

I
I
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Step 4I : Obtain estimates of the Class A parameters.

Let Cyn and n* be defined as in Step 4 of the BD)-) algorithm.

(a) For n < n*, proceed as in Step 4'(a) of the MBDD algorithm.

(b) If n* -< 1000, then for n* < n I< 1000. proceed as in Step 4'(b) of the MBDD algorithm.

(c) If n* < 3000, then for max ( 1000. n* - 1 ) < n - 3000. proceed as in Step 4'(c) of the

MBDD algorithm.

(d) Case (i): =O.

For n > max ( 3000, n* - 1 ). proceed as in Step 4'(c) of the MBDD algorithm.

Case (ii): A=l and 7)=0.

(1) If n* < max(3000+8. n**- 1) . then for max (3000. n' - 1) < n < max(3000+8.

n** - 1), proceed as in Step 4'(c) of the MBDD algorithm. 3
(2) For n > max ( 3000 + 8. r * - 1). obtain estimates of K and a-2 using (4.8b) and

(4.18). respectively. Then. using the relation given in (4.5a), obtain the estimate of A I
as follows : I

A,, :- n ( 1- j( n -3000) ). (4.25) U
Case (iii): IA=1 and 1=1.

(1) Ifn*-<, max (3000+8.n**- 1) then for max (3000.n*- 1) < n <, max (3000+8 ,

n**- 1) .proceed as in Step 4'(c) of the MBDD algorithm.

(2) For n > max ( 3000 + S. n** - 1 ). obtain estimates of A and a' using (4.25) and

(4.18), respectively. Then, using the relation for K given in (4.5b), obtain the estimate 3
of K as follows: I

I
U
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3 --' ( - 3000) a) ( -3000) ("

KI 1&12((n --r(a (n 3000)- 1W(n -3000)0B(n - 3000 )

3 Step 5": Constrain estimates of Class A parameters to lie in parameter set of interest

D.Ane A*, 3,. A32 . 03. and 13: as in Step 5 of the BDD algorithm.

I (a) For n < 1000, proceed as in Step 5'(a) of the MBDD algorithm.

3 (b) For 1000 < n -< 3000. proceed as in Step 5 of the BDD algorithm.

(c) For n > 3000.

I Case (i): A =0.

3 Proceed as in Step 5 of the BDD algorithm.

3 Case (ii): iA=1 and i=?0.

(1) For 3000 < n K< max ( 3000 + 8. n* - 1 ), proceed as in Step 5 of the BDD algorithm.

I (2) For n > max ( 3000 + 8. n** - 1). constrain .. K n. and -2: using (4.9a). (4.9b). and

(4.9c). respectively. (Let A n . K,. and 7rn denote the constrained estimates.) If

= (A2 ). then execution of this step is complete. However, if

3 (7 . . ;d (A . , .K. ). then proceed as follows: Modify r,(n). 6'(n). and

V-2 (n) using (4.10a). (4.10b). and (4.10c), respectively. (Let fi(n). 2 (n). and

S1-(,(n ) denote the modified estimates.) In addition. using the relation given in (4.4a).

modify 7r ( n - 3000 ) as follows (let 7t( n - 3000 ) denote the modified estimate):

3 7r(n -3000) = 1-e

& r'-2 2 2(n -2

Finally, set (i)(n) . Ir) 2( )) =(r( T).w . (rt ) )

I 7r(n-3000) = 7,(n-3000). and (nf. "2 _)

I
I
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Case (iii): A=1 and i1=1. 3
(1) For 3000 < n -< max ( 3000 + 8, n** - 1 ), proceed as in Step 5 of the BDD algorithm. I
(2) For n > max ( 3000 + 8. n**- 1 ). constrain A,,, K,, and o'. using (4.9a). (4.9b), and

(4.9c). respectively. (let A. K-. and Un denote the constrained estimates) If 3
(X. kn U2  ( n Rn ), then execution of this step is complete. However, if

(. &), then proceed as follows Using the relations given in

(4.4a)-(4.4c). modify x'I(n -3000). '( n - 3000). and i0( n - 3000) (let-2 2
7r( n - 3000 ). a ( n - 3000 ), and ' f( n - 3000) denote the modified esti-

mates): 3
7r(n -3000)1-e

(n - 30o0) =a; n

and

2 ~+ 1 ( n - 3000)K
irlo-, n - 3000o) =

Finally. set ( ir(n - 3000) , a- B(n - 3000) . 1rl0.j - 3000)) (l(n - 3000)

02,(n ,3000.? (n -3000)). and (,. n " , 0

The steps of the global decision-directed algorithm are now complete. In the following sec-

tion. the performance of the proposed algorithm will be examined via simulation. 3
4.4. Simulation Results I

In order to assess the performance of the proposed global decision-directed algorithm, an 3
extensive simulation study of the algorithm was made. First, the sample mean-square relative

error incurred by the initial estimate & of 0-2 was computed for all (A. K, 0"
2) in il (defined in 3

U
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Appendix A) using 100 data sets. The results are tabulated in Table 4.1. It is evident from the

values of the relative errors cited in this table that the sample second moment based on 10000 sam-

ples provides highly accurate estimates of - 2 . Furthermore, since the estimate of cr2 at each itera-

tion of the algorithm is obtained by simply updating this sample second moment, the proposed glo-

bal scheme provides, on the average, highly accurate estimates of T2 at each iteration. Conse-

quently, in assessing the ability of this scheme to estimate the remaining two parameters A and K,

the parameter 0-2 was assumed to be known.

Using 100 data sets, each containing a sequence of 5000 observations randomly generated

3 from the Class A envelope pdf, the 1%-trimmed mean relative bias of the estimate of A and the

1%-trimmed mean relative bias of the estimate of K were computed for each (A . K, C2) E fn. Let

3 b, and br denote these quantities, respectively, and let 8 and 8K denote the relative errors in the

estimates of A and K, respectively, obtained using the j -th data set, i.e.,

A A -A a 8-K3 A j K

where (A j , k J) is the estimate of ( A , K ) obtained using the j -th data set. Then,U
3 Table 4.1. MEAN-SQUARE RELATIVE ERROR OF &o (a-2 = 1.0)

-2 10 - 2  10 - 3  10 24  10 -  10-

10_2 4.7266X<10 - 3  1.5638x10 - 2  1.8560x10- 2  1.8897x10 - 2  1.8931X10 - '

3 10-i 1.5018X10 -3  1.7473x10 - 3  1.7755x10 -  1.7784X10' 1.7786X10 - 3

1 3.2742X10' 3.3107X10' 3.3144X10' 3.3148X10' 3.3148x10'

3
3
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The values for these biases are tabulated in Tables 4.2 and 4.3. Note from these tables that the

values for bA and bX are quite low for all parameter vectors under consideration. Thus, the pro- 3
posed global decision-directed algorithm yields an essentially unbiased recursive estimator of the

parameters A and K of the Class A model.

In addition to the relative biases, the following quantities were computed for each 3
(A, K, 0.2) E 11 using the aforementioned data sets:

(i) the 1%-trimmed sample mean-square relative error due to estimating A. U
(ii) the 1%-trimmed sample mean-square relative error due to estimating K. 3

and

(iii) the 1%-trimmed sample mean-square-norm relative error (MSNRE) due to estimating

A andK. 3
Let eAI e. and et., denote the quantities described in (i). (ii). and (iii). respectively. We note

that, for each of these iuantities, the "trimming" is based on the exclusion of a data set which I
yields the highest value for et t and a data set which yields the lowest value for et, i.e.. if 3

j* A arg max (8A) 2 + (81)21

and

j arg min [(8A) 2+ (8X) 21
J

I.
• | iU
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I

I Table 4.2. 1% - TRIMMED RELATIVE BIAS OF ESTIMATE OF A (bA)
(02 = 1.0)

K 10- 2 10- 3 10 - 4  10 - 5 10- 6

10_ 3.8241x10 -  6.011Ox10 -  6.3540x10 6.4057x10' 6.3781x10

10_, -9.7836x10 - 2  -5.0248x10 - 2  -4.2653x10 -  -4.1699x10 - 2  _4.1542x10 2

m 1 -4.5694x10 - 2  -8.8028X10 - 3  -1.6972X10 3  -8.5670X10' -7.3438X10 "4

I
I
I

Table 4.3. 1% - TRIMMED RELATIVE BIAS OF ESTIMATE OF K (b,)
(0 2  1.0)

K 10 - 2 10o- 3  10o- 4  10 -  107

10 -6.4449x10 - 2  4.6075X10 -  5.2917x10' 5.3716x10' 1.1140X10 - 1

107' -3.5629x107' 3.1080x10 -  3.0820x10 -  3.4567x10 - ' 4.8787x10 -

1 -3.1074x10 - 2  1.4006x10 - 2  -9.2976x10 - 3  -1.6823x10' 2.0792x10 - 2

I

I
I
I
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then 3
1 1A (8 A)2 ,(8A,)2 -(8Aj)2 .
98 =

100

= (8 K)2 (KS.)2 - (8.)2
ex 98 E " *

and IIjj I

etox =e A + e1 . I

(For the computations performed here. j* and j** were uniquely determined. However, the

defining properties for these two quantities does not guarantee this. If either j* or j** is not

uniquely determined, then these indices are chosen arbitrarily among those that satisfy the 3
corresponding defining property.) The computed values for eA . eK, and e,, are tabulated in

Tables 4.4, 4.5. and 4.6. respectively. As with the relative biases, it is seen from Table 4.6 that the I
MSNRE is quite low for all parameter vectors under consideration. Moreover, from a comparison

of the values given in Tables 4.4 and 4.5. it is evident that neither eA nor e1 dominates in its con-

tribution to etot. Thus, in a mean-square error sense, not only does the proposed estimator provide 3
a very good global estimator of both parameters A and K, but, in addition, it has no difficulty in

estimating one parameter over the other. I
Lastly, the normalized sample MSNRE ( A 5000 X e,, ) was computed (see Table 4.7) and 3

compared to the Cramer-Rao Lower Bound (CRLB). (The values for the CRLB were given in Table

3.8.) Note that the values for the normalized sample MSNRE and CRLB are essentially on the same 3
-2

order of magnitude. In fact, for A = 10 . the values for the normalized sample MSNRE are quite

close to those of the CRLB. Furthermore. a comparison of the computed values for the normalized I
sample MSNRE of the proposed recursive estimator and the normalized sample MSNRE of the

batch scheme upon which it is based (see Table 3.9) indicates that the proposed recursive scheme

performs better than the batch estimator for a sizeable subset of the parameter set under considera- 3
tion. I
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I Table 4.4. 1% - TRIMMED MEAN-SQUARE RELATIVE ERROR DUE TO
ESTIMATING A (eA)

K 10- 2 10- 3 104 10 - 5  10-6

A-2 -2 2-2-22

10 1.0896xI0 1.4162X10' 1.4684XI0 -  1.4761x107' 1.4702x10 -

I 10_ 1.3786x10 - 2  6.4035X10 - 3  6.0285x10 -3  5.8759X10' 5.7837x10'

I 3.1014x10_. 1.1524X10 3  1.0628X10' 1.0558x10- 3  1.0589x10 - 3I'
I
I

Table 4.5. 1% - TRIMMED MEAN-SQUARE RELATIVE ERROR DUE TO
ESTIMATING K (e1 )

K 1072 10 - 3  10 - 4  10 - 5  10 - 6
I A ,,

10_2 1.2353X10 2 2.1480X10 - 2  2.3808x10 - 2  2.3974X10' 2.8163X10 - 2

10'1 4.1013X10 - ' 8.2767x10- 3  7.4102x1073  6.3852X10' 7.5959X10 - 3

1 3.8256x10- 3.3176X10 - 3  2.1203x10' 1.7420X10' 2.3851x10- 3

I
I
I
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U

Table 4.6. 1% - TRIMMED SAMPLE MSNRE (e,1( ) 3
K 10 - 2 107 3  10 -4  10 - 5 10 - 6 m

10-2 2.3249X10- 2  3.5643X10' 2  3.8492X10 2  3.8735X10 2  4.2865X10 2

10-1 1.7888X10 2  1.4680x10 2  1.3439X10 2  1.2261x10 2  1.3380X10- 2

1 69270x10 - 3  4.4699x10-3 3.1831x10-3 2.7978X10- 3  3.4439X10- 3

I
I

Table 4.7. NORMALIZED SAMPLE MSNRE (A 5000 x e,,)
FOR (A.K.o&2) E a

K 10-2 10 - 3 10-4 10- 5 10 - 6

10 1.1624x102  1.7821X10 2  1.9246x10 2  1.9367x10 2  2.1433X10 2  I

10-1 8.9438x101 7.3401x10' 6.7194X10' 6.1306x101 6.6898X10' I

1 3.4635x10' 2.2350x10' 1.5916x101 1.3989x10' 1.7220X10' 3
I
I
I
I
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In summary then, we see that the proposed global decision-directed algorithm does in fact

yield a global estimator of the parameters which performs very well for all parameter vectors in

the parameter set of interest, even for moderate sample sizes. In view of this performance. this

3 algorithm provides an effective recursive estimator of the Class A model parameters.

3 4.5. Conclusions

In this chapter, we have developed a global recursive estimator of the parameters of the

3 strictly canonical Class A model which performs very well for all parameter vectors in the param-

eter set of interest. The starting point in the study was the development of the so-called BDD algo-

rithm. This basic, decision-directed, adaptive scheme is physik ,uotivated, easy to implement,

3 and is a recursive version of a batch procedure which was seen in our earlier work to provide good

estimates of the parameters. Unfortunately, examination of the performance of this algorithm via

simulation reveals two inherent drawbacks of the scheme that adversely affect its performance

even in a local setting. However, it is seen that by placing certain restrictions on the form of the

initiation vector for the algorithm and by incorporating the appropriate modifications into its

3 framework, the ensuing difficulties associated with the two basic shortcomings can be eliminated,

and an improvement in the performance of the algorithm can be attained globally. Examination of

3 the performance characteristics of the modified algorithm via simulation indicates that this algo-

rithm does, in fact, yield an effective global recursive estimator of the Class A model parameters.

I Although this final algorithm is somewhat complex, the payoff for this complexity is excellent glo-

hal performance.

I
I
I
I
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5. EFFICIENT ESTIMATION FOR SMALL SAMPLE SIZES: THE EM ALGORITHM3

5. 1. Introduction

In the previous chapters, we have obtained several batch and recursive estimators of the Class

A parameters that yield good estimates of the parameters for moderate sample sizes. In this I
chapter. we will focus our attention on the problem of obtaining a batch estimator of these parame-3

ters with good smal-sample-size performance for all parameter vectors in the parameter set of

interest.

One estimator that has the potential of providing estimates of the Class A parameters with

the above-mentioned property is the EM algorithm. This algorithm, which is ideally suited for

estimation problems where the observations can be viewed as "incomplete data." was popularized 3
by Dempster. Laird. and Rubin in 1977 [17). We begin this chapter with a description of this algo-

rithm. We then examine the behavior of the EM algorithm within the Class A framework. In par- 3
ticular. for the single-parameter estimation problem. a closed-form expression for the estimator is

obtained first. Several properties of the estimator are also derived. Using these properties. it is I
shown that the sequence of estimates obtained via the EM algorithm converges and a characteriza- I
tion of the nature of the point to which the sequence converges is given. An implementation of the

estimator based on the execution of two EM algorithms in parallel is then described. Using this 3
implementation, the small-sample-size performance of the proposed estimator is assessed via an

extensive simulation study. The results of this study indicate that the proposed EM estimator I
yields excellent estimates of the parameter for small sample sizes.

The two-parameter estimation problem is then examined. For the two-parameter estimation

problem. a description of the procedure through which estimates of the parameter are obtained is 3
given first. Furthermore, using an implementation analogous to the one used for the single-

parameter estimation problem. the small-sample-size performance of the proposed EM estimator is I
also assessed via an extensive simulation study. Again, as for the single-parameter estimation 3

I
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problem, this study reveals that the EM algorithm yields an excellent estimator of the Class A

parameters for small sample sizes.

5.2. The EM Algorithm

I A commonly-used two-step iterative technique for estimating the parameters of a density

when the observations can be viewed as "incomplete-data" is the EM algorithm [171. Mixture den-

sities. such as the Class A density, can be placed naturally in this framework. In particular, for

3I  such densities. the "incomplete-data" set is the set of observations, whereas each element of the

"complete-data" set can be defined to be a two-component vector consisting of an observation and

U an indicator specifying which component of the mixture occurred during that observation. Instead

of using the traditional incomplete-data density in the estimation process. the EM algorithm uses

the properties of the complete-data density. In so doing, it can often make the estimation problem

more tractable and also yield good estimates of the parameters for small sample sizes.

Let 0 denote the parameter vector to be estimated. _
(P ) the estimate of 0 obtained at the p -th

I iteration of the algorithm. z the incomplete-data set (set of observations). .&_ the complete-data set,

5 and g the likelihood function associated with x. The two steps. the expectation step (E-step) and

maxinization step (M-step). of the EM algorithm are then given as follows:

3 E-step: Evaluate Q ( )) 41E[ log g (. ) -

M-step: Determine 0=( p +1) to maximize Q(e 0 (_)).

I The EM algorithm can be viewed as an alternative to maximizing the function g over . In partic-

ular. since g is unknown, we instead maximize its expectation given the available pertinent infor-

mation, namely the observed data and the current estimate of the parameters.

3 Consider the following basic property of the EM algorithm : Let L denote the likelihood

function associated with z, i.e., the incomplete-data likelihood function. If the function g is posi-

tive almost everywhere on its domain, then it can be shown via a simple application of Jensen's

Inequality that
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L_(.&4' ) > _ . p = . . (5.1)

i.e.. the likelihoods of interest are monotone increasing in 0(_). Given this desirable property of the

EM algorithm and its estimation potential for small sample sizes, let us now consider the problem

of estimating the parameters of the Class A model via the EM algorithm. 3
5.3. Estimation of Class A Parameters 3

Let z A ( z ,.... , z, ) denote the incomplete-data set consisting of n i.i.d. observations gen-

erated from the Class A envelope pdf w. with unknown parameter vector 0 a (A , K )T to be

estimated. With each observation z,, we can associate an unobserved infinite-dimensional indicator 3
vector v i = (vj ,j = 1, 2. . . )r, whose entries are all zero except for one equal to unity in the posi-

tion corresponding to the unobserved component of the Class A envelop( mixture density associ- 3
ated with z,. Thus. let x A {(z, v,) i =1 .... n ) denote the complete-data set and g denote the

likelihood function associated with x. Under the assumption that v.1.... v n are i.i.d. and that the l

z i given vi are conditionally independent and identically distributed, we have that 3
n 00

g(-.I .- ) = 1"I r1T, (A )"j hi (zi : )tJ.

i=1 J=I I
where3

-A j-1

and

A + K 21 A +

h, (zi O) = 2z, A e+K 
I i

The corresponding logarithm is given by

n
Lo()= <v,.V(o)> + <v,.U,(O)> (5.2)

if in7 I
where V (e) and U. ( 0) are infinite-dimensional vectors with the j-th component In rand

I
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5 In hi (z i ;_.)j, respectively, and < ... > is the standard 12-inner product. Let 0 (P)' (Ap ,-K )7*

(AP > 0, Kp > 0), p = 0, 1 .... , denote the estimate of 0 obtained at the p -th iteration of the EM

algorithm. Then. using (5.2) and the definition of the Q function given in the E-step of the EM

algorithm, we have that

Q o<= , < V(!)> + <a,.U, > (5.3)Ui--i i=l

I*where

aaA E "i.- E (v I z,._) )  (5.4)

I and the latter equality follows from the independence assumptions stated above. Let a0

(j = 1.2 .... ) denote the j -th component of ai . Then it follows from (5.4) and the definition of

v i that

3 J (AP) hj (zi :10P ))
ij "" :r, (A . ) hj (zi :O ')  

(5.5)

J=I

Now, the second step of the EM algorithm, the M-step, requires that we determine the argument

O= (A. K )r that maximizes Q (1kO1 p )) . To make the dependence on A and K more explicit, we

I can use the definitions of V. U. * 7. and h, to rewrite the expression given in (5.3) in terms of A

and K as follows:

Q(_IO(P>)= a , % [-A +(j - 1)InA - n(j -1)1]I 
i-=1 

(5.6
n 00 (j- +K) (- +K)

Using the fact that EaJ = 1 and eliminating all terms in (5.6) that are constants with respect to
J=1

the maximization, we obtain the following objective function Q,,j O P ):

I
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Q j(OOp)=-n A+ aln A+ n ln(A+K)
n W n G o a(

-a i a ln(j-1+K) - (A +K) E Z 2 Q (5.K)i =i y =ii=I / =i (j-I+K ) m
/I ooi =1)i=1

n

where a a F , (j - 1) aij . The M-step then yields as the estimate of the true parameter vector at 3
-i j= =I

the p +1-st iteration of the algorithm a maximizing argument of our objective function, i.e..

+1) arg ax 0 (O o(")). (5.8)
~I

With regard to this mtximization, let us address the single-parameter estimation problem first. U
5.4. Single-Parameter Estimation Problem

Consider the single-parameter estimation problem wherein the parameter A is unknown and 3
the parameter K is known. Let QK denote the objective function to be maximized in the M-step of

the EM algorithm for this single-parameter estimation problem. Then. upon fixing KP to its known

value K in (5.7), and thereafter eliminating all terms in (5.7) that are constants with respect to the 3
one-dimensional maximizatkn, we obtain the following expression for Q1 :

QK(A 4p)=-n A +PlnA +n ln(A +K)-)A, (5.9) I

where O- (1 (-)b , €  .4 , zi 2 (b, /(j - l +K )) , and bA 2_a P=2r . Now, recall from
i=1J=1 i=1J=1

the definition of the parameter set A of interest, that A takes on values in the interval I
2

AA A (10 - 2. 11]. Define AA to be an extension of this interval:

AA A (A I (10-2/(1+6)) I< A < 1+e). e > 0, (5.10)

where e is chosen arbitrarily i , and let AA be the compact set over which the maximization is per-

formed in the M-step of the EM algorithm. i.e.. I
'We consider an e-extension of AA instead of AA itself since, for the boundary points 10

-
2 and I of A 4. it is onlY TCa-

sonable that we admit estimates of these parameter values that lie in a neighborhood of the true values (see (5.14)).

I
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AP +1 = arg max Or (A IA ) A 0o E A(
1P 4 (5.11)

A EAAI
This maximization problem can be readily solved by noting the following property:

I Basic Property :For each p E 0, 1. QK (A AP ) is concave in A on (0. oo) (for all K > 0).

Proof: From (5.9), we have that

02 /3 n

SA2 QK (A I Ap,) -- (A 4-K )2

Since AP E AA for all p, it follows that AP > 0 for all p. which implies from the definition of

that > 0. Thus, 2

-2-Q 1 (AIA)<0 for all p

* oA

I It follows from this basic property that, if Q. attains its maximum at an interior point of (O,oo),

then a necessary and sufficient condition for A = A m.. to be the maximizing root on this interval is

that

* 0
- QK(AIA P)A A =-0 (5.12)8A m

I Evaluation of this gradient equation yields the following quadratic equation:

aIA 2 +a2A +a3IA=A.-0.

where a 1 :=-n -. a 2 :=aK +(3 +n. and a3 :=3K. Note that a,. a2 , and a 3 are functions

only of z, A. .and K. Now, it follows from the definition of 0 that q5 is nonnegative, which

3 implies that a, < 0. Furthermore. since 3 > 0 (see proof of Basic Property) and K > 0 . it also

follows that a 3 > 0. Given that a, and a3 are negative and positive, respectively, and the require-

I ment that A Ma be positive, one of the roots to the quadratic equation can be disregarded

I



I
76

immediately, and we obtain the following closed-form expression for A .__ in terms of the observa- 5
tions, the known parameter K. and A.:

a (,A,.K) + [ a2(,A..,Ap K)-4a(..A.))a 3 (z .AK)] 1/ 2

A XaX 2 a, (.-2 a 1 (zAp. K)

Since A max maximizes QK on (0, oo). it follows that if A max lies in AA, then A max maximizes QK on

AA. However, if A max lies outside of AA. then it follows from the Basic Property of QK that the
• |

argument which maximizes QA. on AA is simply the boundary point of AA nearest A max. In sum-

mary then, the solution to (5.11) is given as follows:

0-2 0-2

if A max < -
1+6 1+6

, (5.14)
AP+ 1 

=  Amax if A max EAA

1+e if Amax% >1+6 G

A o E AA. The estimator described by recursion (5.14) will be referred to in the sequel as the EM

estimator of A. 3
54.1. Properties of EM estimator of A

Let (0. oo) be the domain of QK (K > 0). Note that a Q0 (AJA ) and 22 2 (A A)

aA a

exist for all A E ( 0. oo). I
Property 1: For each p E (0. 1.. there exists X,, > 0 such that

QK (A'P +1 [A,, )- QK (A' I A,, > X'. (AP +1 - AP )

Proof. The property clearly holds if AP = AP +1. Suppose AP d AP +l- Expand QK (AJAP,) in a 3
Taylor series about AP +, to obtain

I
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i QK(A [Ap)=QK(Ap+1jAd)+(A -AP+d )  QK(AP+11AP)

+(A-AP 2 a (5.15)

i* "
for some A,+, satisfying min(A ,A, +) <Ap+ <max(A A,,p+). Evaluation of (5.15) at

A = A .y ield s :

I8
aAA2 (5.16)

I- A

Now, AP +, can take on one of three values: (10-2/(1 + e)), A Max, or 1 + e (see (5.14)).

IG() Suppose A. +1 = A max * Then aQ A 11A LQ A xIA .weetelteOx Ap+1Ap) Qx A ~xI p =0,where the latter

aA CA

inequality follows from the definition of A max* Consequently.
a

(AP-AP +0)--Q(Ap+1 1AP)=O"
8AI,

(ii) Suppose AP+ = (I0-2/(1 + e)). Then. AP+ , , A (since, of course, A E -A also). Also note

that A. +1 = (10 -2/(1 + )) only when A max < (10 - 2/(1 + e)), i.e.. AP +1 > A max* Since

AP +1 
> Am and - QK (Amax AP) 0, it follows from the Basic Property of QT that

8A A,

- Q(AP +11AP )0. Thus, we have that AP-AP+1 >0 and 0 (Ap+11AP)< 0,aA

(iii) Suppose Ap +1 -1 + e. Then A. +1 > A. Also note that AP +1 "1 + e only when A m + e.

i.e., A. +1 4 A Max" Since A, +1 K, A Max and a Q- (A m I AP) 0. it again follows from the

Basic Property of Qr that Q a 4 Athat A -A , 1 0 and

-A- QK (AP +1 IA,) P 0. which imply that (AP - Ap +d " QK (AP +1 1 AP 4 0.
aA aAI
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In all three cases. (A, - A, +1) QK (AP +1 1A,,) K( 0, which together with (5.15) implies that I
aA

Q.K (Ap ] 4 - QKr (Ap IA )>- (Ap +1 - AP )2 2 
6 Q, (

& I
Moreover. from the concavity of QK. we have that QK (A +1 1 A) < 0. Thus. by taking

2 ,
XP - , QKr (AP +1 1 AP )

the statement of the property follows. 0 I
The following property follows straightforwardly from Property 1:

Property 2: For each K > 0. there exists a scalar X > 0 such that I

QX (Ap +1 1Ap ) - QK (AP I A, ) > X (Ap +1 - A) 2  for all p E {0.1 .... }.

Proof We have shown in Property 1 that for each p E {0, 1..) . there exists X, > 0 such that

QK (AP + AP )-Qx (As IAs ) > Xs (A,, +1 - As )2  (5.17)

where 1

P A 2 Q 1 A,+ 1 I AP, (5.18)

. I
when A, ;d A,,+1 and min(A,, A +) < A +1 < max ( A , A,, +,). Equations (5.9) and (5.18) yield

the following expression for XP " I

, =, + "

(A*,,1) 2  (As*+1 
+ K )2

where the dependence of 0 on p is explicitly shown here. Since Op > 0 for each p. it follows that

I
I
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XP > ,
(AP +1 + K)2

Furthermore, since min (A,. Ap +1) < AP+ 1 < max (Ap.Ap +I) and Ap Ap +1 E AA. we have that

AP +1 EAA. i.e.. AP +1 -< I+E. Thus.

X >) for allp
(1 +e+K

which implies that

X ff XP > 2 >0o (5.19)
P (1+e + K) 2

I It then readily follows from (5.17) and (5.19) that

QK(AP+I IAP )-QK(A IAP ) > X(Ap +-A) 2 for all p

Thus, we have the desired result. 0

We are now in a position to prove the following convergence theorem. Let L X denote the

incomplete-data log-likelihood function for known K (K >0). i.e.. the traditional log-likelihood

3 function for the single-parameter estimation problem:

L X ( A )  E In T, r,(A )hj (z i ; A . K )  .A E AA

5 =1 ) =1

AAJ 1  A+K21 A +1I A(5.20)
I = ' " In Ze - j -  A+ z. e ' 2, ,AEfA A

~ =1 QJ- 1) 1 j--1+K

Note that LK is continuous on AA and differentiable in the interior of AA. Since L 1 is a continu-

ous function on the compact set AA. it follows that LK is bounded. Furthermore, from (5.1). we

have that Lr (A, +1 ) >, L 1 (A,) for all p E{O. 1..... Thus. since ILr(A P )} is a monotone

beIbounded sequence. IL1 (A,,)} converges monotonically to some L . Now, let
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L(f) A {A E AA : L 1 (A) - (3. The statement of the theorem is then given as follows:

Convergence Theorem Let L .  and L be defined as above. Then AP -. A E AA and

LK (AP) )-*L =L (A . Furthermore, if A is an interior point of AA. then = -0.

aA A_--

i.e.. A is a stationary point of L 1 , the likelihood function of interest.

Proof: It is evident that if AP -+ A ,then L =Lz (A ). Now, in order to show that AP -+ A .it

suffces to show that

(i)A,+i -Oasp -oo.and

(ii) L (L) is discrete. I

That these two conditions are sufficient for the convergence of {AP) follows from Theorem 6 of

WU [18]. 1
that Consider condition (i). We have shown in Property 2 that there exists a scalar X > 0 such

Q1 (AP+ 1 AP )-QK(AP IAP ) > X(A,+j-AP) 2  for allp E{0. 1 .... }. (5.21)

From the definitions of LK and Q. , it can also be readily shown via a simple application of

Jensen's Inequality that

L (AP +1) -LX (AP) Qj(AP +I1AP )-QX(AP IAP) for all p E{0, 1 .... } (5.22)

(see proof of Theorem 1 of Dempster. Laird, and Rubin (17]). Thus, it follows from (5.21) and 3
(5.22) that

LK (AP + 1)-L(A,, XI (AP+ 1 -AP )2  for all p E{0. 1 ..... (5.23) I

Since (L. (AP )) converges, we have that I LZ (AP +) - LK (AP ) j - L1 (AP +1) - L1 (AP,) - 0 as 3
p - oo . where the first equality follows from the monotinicity property of (L. (A,, )}. It then fol-

lows from (5.23) that I AP +1 - AP ( -- as p - oc and the verification of condition (i) is complete. I
I
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Consider condition (ii). We need to show that {A E AA : Lr (A) - L = 01 is discrete. It can

be readily shown that Li (A)- L is analytic in AA. Since it is well known that the zeroes of an

analytic function (which is not identically to zero) are isolated, the result follows.

The verification of conditions (i) and (ii) is now complete. Since AP --# A in the closure of

AA and AA is a closed set, it follows that A E AA. We must now show that if A is an interior

point of AA, then A is a stationary point of LK. Again, from Theorem 6 of Wu [18]. it suffices to

show that

I (iii) aQK (Ap +11 Ap,) 0 for all p sufficiently large, and
CIA
8 -L * *

(iv) -Q (A IAP ) is continuous in (A. AP ) on AA X AA.

Consider condition (iii). If A is an interior point of AA. then there exists some p' such that

AP, + is an interior point of AA for all p > p'. Thus, it follows from (5.14) that AP +1 = A max for

all p > p'. (Of course, A max varies with p.) Since -L QX (A max AP )= 0 by definition of A max.

we have that ( +1 I AP )= 0 for all p >t p'. The verification of the condition is complete.

U Consider condition (iv). Note that the infinite series in the expression for Qjr (A I AP ) given in

(5.9) are uniformly convergent series on AA X AA. Furthermore, each term of a given series is a

continuous function on AA X AA. It followc- then that each series is a continuous function on this

domain. Thus, the expression for a QK (A I AP ) consists of sums and ratios of continuous func-
aA

tions on AA X AA. The result follows.

Since conditions (iii) and (iv) hold, it follows that if A is an interior point of AA. then A

is a stationary point of LX . The proof of the theorem is now complete. 0

V
I
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The particular stationary point to which (A } converges is dependent upon the initiating point

A 0. Thus, given a "sufficiently rich* set of initiating points, then upon executing several EM esti-

mators of A in parallel, each initiated with a different point from this set. all of the stationary I
points corresponding to relative maxima of the (traditional) likelihood function can be located, and

hence, the point(s) corresponding to the absolute maximum. With this in mind, consider the fol-

lowing implementation of the EM estimator of A. 3
5.4.2. Implementation of EM estimator of A 3

*

First, choose e = 0.1 in the definition of AA (given in (5.10)). Secondly, let tI set of initiat- 3
A

ing points, AA, consist of the left boundary point of AA and the (logarithmic) mean of the inter-

val defined by AA, i.e.. = 9.0-9 x 10 3 . 10-1 }. (That the two points i AAi, form a "sufficiently

rich" set for the determination of the point(s) corresponding to the absolute maximum of the (trad-

itional) likelihood function was verified experimentally.) For each true parameter A . two EM esti-

mators of A were executed in parallel, one initiated with 9.0-9 X 10 - 3, the other with 10- 1. Let

{A.' } and {AP2
1. p = 0. 1. denote the sequences of estimates obtained via these two EM estima-

9 10-'). Both EM estimators "converged" in the sense that, for each 3tors (A ot = 9.5"9 X 10- 3 and A o10

estimator, the magnitude of the relative difference in the values of the estimates on successive

iterations decreased as the number of iterations increased. For each of the two sequences of esti-

mates (A)}, i =1, 2. the so-called convergence iteration value was then taken to be the minimum

iteration value I U > 1) for which 1((A,'- Ajt.. )/Ati)l < 10 - 7. Let p* and p** denote the conver-

gence iteration values for {A.') and (A12, respectively. Then, of the two "limits" A 1, and A2 I

the estimate A of the true parameter A was chosen to be that limit which maximized the tradi-

tional incomplete-data likelihood function, i.e..

A arg max Lx (A). I
A C IA ' A

2 
1

Let us now examine the performance of this estimator.

I
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5.4.3. Simulation results

* An extensive simulation study of the proposed estimator was performed for a wide range of

parameter vectors (A XK)r in A. in particular, for all (A. K)r E 41 . where

fl -a (A K) EAI logA E Z and logK E Z}. For each (A X ) pair. K was fixed to its true value

and estimates of the paramter A were obtained using the implementation of the EM estimator of

A described above. Using 100 data sets, each containing 100 samples generated from the Class A

3 envelope pdf. the sample mean-square relative error was first computed. Let PA denote this quan-

tity. Then

2I

where Ai denotes the estimate of A obtained using the j -th data set. The values for PA are tabu-

lated in Table 5.1. Note from this table that the values for the sample mean-square relative error

3are extremely low for all (A .K) pairs under consideration (on the order of 107' to 10-2). The

values of the normalized sample mean-square error (NSMSE). which is defined to be the product of

3the sample size (100) and the sample mean-square relative error, were then computed (see Table

5.2) and compared to the Cramer-Rao Lower Bound (CRLB). (The values for the CRLB are given

i in Table 5.3.) Note that the values for the NSMSE are very close to the CRLB for all (A .K) pairs.

The reason that the values for the NSMSE are sometimes lower than the CRLB is due to the fact

that the estimator is slightly biased, as is evident from the values of the sample relative bias, 7 A,

I 100 Ai _ A

100A 100 A

tabulated in Table 5.4. Now, it was noted in the implementation described above that the estima-

3tion process involved executing two EM estimators of A and each "converged' within a certain

number of iterations, namely p7 and p*' . (The association with the j -th data set is made explicit

I
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Table 5.1. SAMPLE MEAN-SQUARE RELATIVE ERROR (PA)

(100 SAMPLES. 100 RUNS) I
K 10- 2 10- 3  10 - 4  10 - 5  10I- 6

A

10- 2 3.2532 x 10- 2 1.0449 x 10' 8.7841 x 10 - 3 8.6326 x 10 - 3  8.6176 x 10 - 3 I

10- 1 1.3591 x 10- 2  1.0324 x 10-2 9.4479 x 10- 3  9.2596 x 10 - 3  9.2451 x 10- 3
1 1.7950 x 102 6.4732 x 10 - 3  6.8095 x 10' 6.5755 X 10' 6.6118 x 10' 3

l
Table 5.2. NORMALIZED SAMPLE MEAN-SQUARE ERROR

(100 SAMPLES. 100 RUNS)

K 10- 2 1073  10-4 10- 5 10 - 6

10- 2  3.2532 1.0449 8.7841 x 10- 1 8.6326 x 10- ' 8.6176 x 10- 1

10- 1  1.3591 1.0324 9.4479 x 10- ' 9.2596 x 10- 1 9.2451 x 10- 1 I
1 1.7950 6.4732 x 10- ' 6.8095 x 10- 1 6.5755 x 10- ' 6.6118 x 10 - 1 I

Table 5.3. CRAMER-RAO LOWER BOUND FOR ESTIMATE OF A

K 102- i-3  0o -5 10-m

10- 2 4.0291 1.2041 1.0112 9.9246x10 9.9055x10'

10- 1 1.3054 9.7417 x 10- 1 9.3217 x 10- ' 9.2600 x 10- 1 9.2509 x 10 -1

1 1.3227 9.6827 x 10- ' 9.0303 x 10- 1 8.9045 x 10- 1 8.8821 x 10 -  m

I
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I
Table 5.4. SAMPLE RELATIVE BIAS ('7,4)

(100 SAMPLES. 100 RUNS)

U K 10- 2 10-3  10.-4  10-5 10.-6

107 2  1.3683 x 10-' 8.1403 X 10-2  7.4757 x 1072  7.4103 X 10"  7.4038 X 10'

10-1  9.1323 x 10-2  8.0240 x 10' 7.6436 x 10-  7.5664 x 10-2  7.5585 X 10- 2

8.4126 x 10-2  6.8618 x 10-2  7.1043 x 10- 2  6.8923 x 10' 6.9436 x 10-2

U
U

Table 5.5. WORST-CASE CONVERGENCE ITERATION VALUE (p)
(100 SAMPLES, 100 RUNS)

K 10-2  1 r-3 10 1071 10-

-2

10-2  7.88 6.59 5.32 4.85 4.41

10 11.18 6.61 5.47 5.24 5.21

1 27.99 20.02 18.75 17.45 16.90

I
U
U
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here.) Let p ma denote the sample worst-case convergence iteration value, i.e.. 3
1 100

P ma E max (p* IPi)
1 00 j=I

The values for p... are tabulated in Table 5.5. Note that the values for this sample worst-case

convergence iteration value are extremely low for all parameters under ccnsideration (on the order

of 10). 1
Ln summary. we see then that for a sample size of 100. the proposed EM estimator of A per-

forms very well in a mean-square error sense, in terms of attaining the CRLB, and in terms of rate

of convergence. Consequently, for the single-parameter estimation problem, it yields an excellent 3
estimator for small sample sizes.

5.5. Two-Parameter Estimation Problem

The maximization problem described by (5.8) will now be considered. As for the qingle-

parameter case, define A_ to be the following extension of the parameter set A:

A I(A, K)': 9.0'9x10- 3 A< 1.1 and 9.59x10- < K 1.1x10 - 2 }

anca let A6 be the compact set over which the maximization will be performed, i.e..

o_- +) = arg ma , Eo) A*9 (5.24)GE A; 3
Consider first the gradient equations

a"i Q (a.i ( -k ) 0 (5.25a)

and I

('iIA( o(5.25b)3
OKI

Upon computing the partial derivatives on the left-hand sides of (5.25a) and (5.25b). the gradient

equations become I
I
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-n + + E. ," - =o. (5.26a)
A A+K i=ly=l (j-l+K)

ana

n 2) az7 CO -0. (5.26b)
A+K i= IJ = (j -+K) i=t ' (j-l+K) 2

5 Now (5.26a) simplifies straightforwardly to a quadratic in A. Using an argument analogous to the

one given in Section 5.4, it can be shown that one of the roots to this quadratic can be disregarded,

and the following closed-form expression for the parameter A can be obtained in terms of the

parameter nK + K- a - n - [(nK + K- a - n)2 +4 (n + ) a K]/2

A= (5.27)
-2 (n + e)

where G A F. F .i Upon substituting the expression for A given in (5.27) into

(5.26b), we obtain an equation in K only. Thus, the two-variable maximization problem has been

3 reduced to a maximization over the single variable K. Unfortunately, the resulting equation in K

is highly nonlinear in this parameter. However, since the maximization is performed over the set

-7 -. - 1K7z o -2

A 9 , K takes on values in the interval [9.09 X 10- . 1.1 x 102]. Thus j--+K ]- for j > 2.

3 Using this approximation, the highly nonlinear equation in K can be greatly simplified. Moreover,

the square of the simplified equation can be reduced to the following fourth-order polynomial

m equation in K :

c 1 K 4+c 2 K 3+cK2 +C 4 K+c 5  0. (5.28)

where the coefficients ci (1 < i ;,5) are funct'ons only of the observations and the current estimate

__P ) of the parameters. (The expressions for these coefficients are given in Appendix B.) The roots

m of (5.28) can be readily determined. Consider the set consisting of the positive, real roots of (5.28)

which lie in the open interval (8 x 10- 7. 1.2 X 10- 2) and which satisfy the simplified, unsquared

m equation in K. These roots can be refined using Newton's root-finding method on the original

I
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equation initiated with these roots. For those refined roots which take on values in the interval 3
(9.6 X 10 - 7 . 1.1 X 10-2).2 the corresponding value of A is then evaluated using (5.27). If the value

of A lies in (9.--9 x 10- 3.
1.1). then the resultant (A .K) pair yields a stztionary point in the inte- I

rior of A 0 . If the value of A does not lie in this interval, then the resultant (A X) pair yields a 3
stationary point that does not lie in the interior of Ae . and hence, is eliminated from future con-

sideration. I

The above procedure yields those stationary points that lie in the interior of A . Let us now3

focus our attention on the problem of determining those stationary points that lie in the interior of

each of the four intervals which define the boundary of Ae. First, consider the interval defined by

K = 9.0-9 X 10- " and A E [9.9 X I0- 3, 1.1]. Clearly, for fixed K. any stationary point must

satisfy (5.27) evaluated at this fixed value of K. Now, upon evaluating (5.27) with

K = 9.09 x 10- 7. if the resulting value of A lies in (9.5 x 10 - . 1.1), then the stationary point |
defined by this value of A and K = 9.09 X 10 - 7 is retained for future consideration: otherwise, it is

disregarded. Now, consider the interval defined by K = 1.1 X 10 - 2 and A E [9.69 x 10 - 3 . 1.1].

Again, upon evaluating (5.27) with K = 1.1 X 10- 2, if the resulting value of A lies in 3
(9.69 X 10 - 3

. 1.1), then the stationary point defined by this value of A and K = 1.1 X 10 - 2 is

retained for future consideration: otherwise, it is disregarded. Let us now determine the stationary 3
points in the interior of the interval defined by A = 9.09 x 10- 3 and K E [9.0-9 X 10 - 7. 1.1 x 10- 2] .

Now, any stationary point in the interior of this interval must satisfy (5.26b) evaluated at I
A = 9.09 x 10- 3 . Since (5.26b) is highly nonlinear in K, the determination of the roots of (5.26b) 3
(A = 9.69 x 10- 3 ) can be simplified by using once again the approximation that j -I+K 2-j -1 for

i 2. Using this approximation. (5.26b) can be reduced to the following fourth-order polynomial

equation in K
_ I

21t was veriied via simulation that the interval (8X1O - , 1.2xlO- was sufficiently large to contain those roots whose
refinement yields, at least, all roots of the original equation in (9.×9x0 ,1.IxIO-2).

I
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5 d 1 K 4 "d 2 K 3+d 3 K 2 +d 4 K+d5 z"0 . (5.29)

where d 1 =0 4  . d 2=2AA4 -3 2  . d 3 -0 4 A2 _ 2 A+0 3 - 1 +n, d 4=23 3 A-3A ,

d 5 = 0 3 A2 . and where the Pi s (I, i 4 4) are functions only of the observations and the current

3 estimate of the parameters. (Thp expressions for these 3i 's are given in Appendix B.) Consider the

positive, real roots of (5.29) that lie in the interval (8 x 10- ". 1.2 X 102). These roots can be

I refined using Newton's root-finding method on (5.26b) (A = 9.09 x 10 - 3) initiated with these roots.

3 If the value of the refined root lies in the interval (9.0"9 X 10- ' . 1.1 X 102), then the stationary

point defined by A = 9.09 X 10- and K equal to the value of the refined root is retained for future

3 consideration. 3 Otherwise, it is disregarded. The stationary points in the interior of the interval

defined by A = 1.1 X 10- 2 and K E [9.0-9 X 10 - 7 . 1.1 X 10 - 2 ] are determined in a completely analo-

gous manner.

I*
The function Q,, is now evaluated at all stationary points in the interior of A6 , at all sta-

*

tionary points in the interior of each of the four intervals which define the boundary of Ae and at

the four comer points of A* (9.09 x 10'. 1.1 x 10-2) r  . (9.9 X 10 - 3 , 9.09 X 10-7)

I (1.1 . 1.1 X 10-2)', and (1.1 . 9.09 X 10) . Of the points at which O is evaluated, the solution

to (5.24) is taken to be that point which maximizes Qbj. For a given 0(o) . we will refer to this

I solution as the EM estimator of .

I
5.5.1. Implementation of EM estimator of G

I As for the single-parameter estimation problem. two EM estimators of 0 were executed in

parallel, one initiated with (9.5 x 10'. 1.1 x 10')' (the vector in AS for which the ratio of the

second coordinate to the first is largest). the other initiated with (10 -1. 10-4) r (an interior vector

of A9_ for which the ratio of the second coordinate to the first is the logarithmic mean over all

3 Again, it was verified via simulation that the interval (8x10 - 7 , 1.2x1O- was sufficiently large to contain those roots
whose refinement yields, at least, all roots of the original equation in (9.09X10 ,1.1x10-).

I
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possible values that this ratio can take on for parameter vectors in A *).
4 Let 0 (p {(A 1. Kp') I

and ., ,P A(A 2. Kp2) r  .p 0. I denote the sequences of estimates obtained via these two

EM estimators (_E(o) = (9.69 x 10-'. 1.1 x 10-2)' and 0(0)= (10 - '. 10")' ) . Both EM estimators

"converged" in the sense that. for each estimator, the magnitude of the relative difference in the 3
values of the estimate (of each parameter) on successive iterations decreased as the number of

iterations increased. For each of the two sequences of estimates (0&(P )} , i =1 . 2. the "convergeliLeI

iteration value" was then taken to be the minimum iteration value I (I >1l) for which

I((A -A 3 -1 )/A/')l < 10- and 1((K 1,-K.. )/KI)I < 10-'. Let p' and p" (p'.p" > 1) denote the

convergence iteration values for {.j0 } and {0? )}, respectively. Then of the two "limits" 0 (p' ) 3
and 02 . the esttmate 0 of the true parameter vector was chosen to be that limit which maximized I
the traditional inccmplete-data likelihood function, i.e.,

arg max L(). 3

where I

L(j)=,InE'rj(A)fj (z1;A .K) .
i=1 j=l

Let us examine the performance of this estimator. 3
5.5.2. Simulation results

As for the single-parameter estimation problem, an extensive simulation study of the pro-

posed estimator was performed. Using 100 data sets. each containing 100 samples generated from I
the Class A envelope pdf. the sample mean-square norm relative error (MSNRE) was first I

41t was observed via simulation that the convergence of the EM estimator to a vector that closely approximated the
true parameter vector was highly dependent on the value of this ratio. In particular, if the ratio of the second coordinate of
the initiating vector to the first exceeded (but not considerably) the corresponding ratio for the true parameter vector, then
the EM estimator was guaranteed tc converge to a vector that closely approximated the true parameter vector. Thus, given
the two initiating vectors, at least one of the EM estimators was guaranteed to converge to a vector with this property. This
restriction on the above-defined ratio was also seen to be a necessary condition for convergenie of the BDD algorithm formu-
lated in Section 4.2. 3

I
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computed for each 0 E fl . (The definition of fl was given in Section 5.4.3.) Let P9 denote this

I quantity. Then.

100j= A K

where < ( , .Kj )T (1<j (100) denotes the estimate of 0 obtained using the j-th data set.

I The vaiues for P_ are tabulate in' Table ).6. Note from this table that the values of this relative

5 error are quite low for all parameter vectors under consideration (on the order of 10- 2 to 10-1).

The values of the normalized sample mean-square norm relative error (.: n X MSNRE) were then

3 computed (see Table 5.7) and compared to the CRLB. (The values of the CRLB were given in Table

3.8.) Note that the values of the normalized MSNRE are either close to the CRLB or lower than the

U CRLB. The reason that the values for the normalized MSNRE are sometimes lower than the CRLB

3 is due to the fact that the estimator is somewhat biased, as is evident from the values of the sample

relative bias. "l@.

77 E -;

tabulated in Table 5.8. Now. it was noted - -; hat the estimation of 0 involved the execution of

3 two EM estimators of 0 in parallel and eac- iverged* within a certain number of iterations,

namely P' and " . (The association with the j -th data set is made explicit here.) Let p -

denote the sample worst-case convergence iteration value. i.e.,

1 100

1 j =1
e

The values for p 2. are tabulated in Table 5.9. As was the case for the single-parameter estima-

tion problem, note that the values for this sample worst-case convergence iteration value here are

also extremely low for all parameter vectors under consideration (on the order of 10).

In summary then, we see that for a sample size of 100. the proposed EM estimator of 0. per-

forms again very well in a mean-square error sense, in terms of attaining th, CRLB. and in terms
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Table 5.6. SAMPLE MEAN-SQUARE NORM RELATIVE ERROR (Pq) I
(100 SAMPLES. 100 RUNS)

K 10- 2 10- 3  
1 0

4  10- 5  10- 6

A - 2-1- 

I
10-  5.6312 x 10-  7.7317 x 10- ' 7.0539 xl071  6.9907 x 10- ' 6.8783 x 10- '

10- 1 8.5002 x 10- 2 1.3443 x 10- 1  1.2567 x 10- ' 1.2522 x 10- 1  7.484 X 10- 2 I

1 3.4455 x 10- 2 4.9856 x 10- 2 4.8199 X 10-2 4.6672 x 10 - 2  3.0990 x 10- 2 I
' I

I
I

Table 5.7. NORMALIZED MEAN-SQUARE NORM RELATIVE ERROR
(100 SAMPLES, 100 RUNS)

K 10 - 2 10- 3  10 - 4  10- 5 10 - 6

10- 2 5.6312 77.317 70.539 69.907 68.783

10- 1  8.5002 13.443 12.567 12.522 7.484

1 3.4455 4.9856 4.8199 4.6672 3.0990

I
I
I
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Table 5.8. SAMPLE RELATIVE BIAS (719)
(100 SAMPLES, 100 RUNS) -

K 10- 2 10-3 10 4  10-5  10-6

10- 2  2.6277 x 10 - 1 6.7566 x 10 - ' 6.5280 x 10- ' 6.5049 x 10- 1 6.0676 x 10-'

10- 1 3.2896 x 10 - ' 4.1521 x 10- 1  4.0252 X 10- 1  4.0185 X 10- 1  2.7972 x 10- '

U 1 2.0539 X 10-'1 2.3343 x 10- 1 2.3146 x 10- ' 2.3049 X 10-1  1.8362 X 10-

I
I

Table 5.9. WORST-CASE CONVERGENCE ITERATION VALUE (p )I (100 SAMPLES 100 RUNS)

K 10 - 2 10-3 104  10-5  10

10- 2 4.98 14.80 6.78 4.22 4.25

10 - 1 22.24 10.70 8.70 8.53 7.82

1 27.98 23.86 22.73 22.62 20.38

I
I
I -
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of rate of convergence. Consequently. it yields an excellent estimator for small sample sizes for the 3
two-parameter estimation problem as well.

5.6. Conclusions

In summary, we have seen in this chapter that the EM algorithm uses the properties of the

incomplete-date likelihood function in the estimation process, and so is ideally suited for estimat- 3
ing the parameters of mixture densities such as the Class A density. It has many desirable features.

e.g., its monotonicity property for the likelihood sequence and its estimation potential for small 3
sample sizes. Moreover. within the context of estimating the Class A parameters. we have shown

that, for the single-parameter estimation problem. the sequence of EM estimates converges. I
Furthermore, we have shown that if the limit point to which the sequence converges is an interior

point of the compact set over which the maxmization is performed, then it must necessarily be a

stationary point of the likelihood function of interest. Using an implementation based on the exe-

cution of two EM algorithms in parallel. an extensive simulation study for both the single-

parameter and two-parameter estimation problems was also performed. The results of these stu- I
dies indicate that the proposed EM estimator does, in fact. yield an excellent estimator of the Class

A parameters for small sample sizes for all parameter vectors in the parameter set of interest.

I

I
I
I
I
I
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6. SUMMARY AND CONCLUSIONS

In this work, we have developed and examined the performance of various optimal and near-

optimal identification procedures for the Class A interference model.

We considered first the problem of basic batch estimation of the Class A parameters from an

independent sequence of Class A envelope samples. From this study, it was seen that the method-

of-moments estimator based on the fourth and sixth moments yielded strongly consistent and

asymptotically normal estimates of the parameters, but was highly inefficient due to the insensi-

tivity of the moments to changes in the parameter K. However, via an examination of the

Cramer-Rao Lower Bound, it was seen that a tremendous improvement in performance over the

method-of-moments estimator was possible if an asymptotically efficient estimator could be found.

I Unfortunately, maximum likelihood estimation proved to be compu'.,tionally unwieldy due

largely to the multiplicity of roots in the likelihood equation. However, by initiating Newton's

root-finding method on the likelihood equation with the method-of-moments estimator, a pro-

cedure was obtained that combined the consistency and efficiency of the two approaches. Despite

its asymptotic optimality. this Moment/Likelihood procedure did not perform well for moderate

sample sizes because of the extremely high inefficiency of the moments estimator. However, by ini-

tiating likelihood search with the more efficient, physically-motivated Threshold-Comparison esti-

mator, a batch estimator of the Class A parameters was obtained that yields good estimates of the

parameters for moderate sample sizes.

The problem of recursive identification of the Class A parameters was then addressed. The

I starting point in the development of a global, recursive estimator of the parameters was the BDD

algorithm. This algorithm is physically motivated, easy to implement. and is a recursive version of

the Threshold-Comparison estimator, which was seen in the batch estimation problem to yield

5 accurate estimates of the parameters. In particular, this basic decision-directed algorithm is based

on an adaptive. Bayesian classification of each of a sequence of Class A envelope samples as an

5 impulsive sample or as a background sample. As each sample is so classified. recursive updates of

I
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the estimates of the second moment of the background component of the interference envelope den-

sity, the second moment of the impulsive component of the interference envelope density. and the

probability with which the impulsive component occurs, are readily obtained. From these esti- I
mates, estimates of the parameters of the Class A model follow straightforwardly, since closed-

form expressions exist in terms of these quantities. Examination of the performance characteristics

of the algorithm revealed two inherent drawbacks of the algorithm, which adversely affect its per-

formance even locally. However, by imposing the necessary restrictions on the form of the initia-

tion vector for the algorithm and incorporating the appropriate modifications into its framework, I
the ensuing difficulties associated with these two drawbacks can be eliminated. The result was a

global, recursive estimator of the Class A parameters that yields excellent estimates of the parame-

ters for all parameter vectors in the parameter set of interest.

The problem of efficient estimation of the Class A parameters for small sample sizes was then

ccn ier-d TI- -ro-osed esti7rator was ba~ed on 9.be FM algo ritbm, a two-step iterative estimation I
technique which was ideally suited for the Class A estimation problem since the observations could

be readily treated as "incomplete data." For the single-parameter estimation problem (A unknown,

K known), a closed-form expression fur the estimator wsq obtained. Tb ronv -rgence properties of

the EM algorithm as they pertain to the Class A estimation problem were also examined. Again.

for the single-parameter estimation problem. (A unknown, K known), it was shown that the I
sequence of estimates obtained via the EM algorithm converges. Moreover, it was shown that if the

limit point to which the sequence converges is an interior point of the set over which the optimiza-

tion is performed, then it must necessarily be a stationary point of the traditional likelihood func-

tion. The small-sample-size performance of the EM algorithm was also examined via simulation

(for both the single-parameter and two-parameter estimation problems). For each true parameter

vector, two EM algorithms were executed in parallel, each initiated with a different initiating vec-

tor. the pair of initiating vectors being fixed for each true parameter vector. For each initiating vec-

tor, the EM algorithm converged to a limit vector in the parameter set of interest, and the estimate

vector was then taken to be the limit vector that maximized the incomplete-data likelihood I
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I function. For each initiating vector and true parameter vector, the EM algorithm converged to the

limit vector within relatively few iterations (on the order of 10). Moreover. via an extensive simu-

lation study. it was seen that this likelihood-based scheme yields excellent estimates of the parame-

ters of the Class A model (in terms of attaining the Cramer-Rao Lower Bound) for small sample

sizes (on the order of 10 2).

i This study has been devoted to the problem of obtaining optimal and near-optimal

identification procedures for the parameters of the Clas- A interference model. A thorough investi-

gation of this problem has been made. with the objective of obtaining theoretically optimal and

practically efficient estimation procedures for these parameters. The problem of efficient estimation

in both the batch and recursive frameworks has been addressed. It is anticipated that the results of

I this study will find widespread application in the areas of digital communications, sonar, and radar

due to the common occurrence of impulsive channels in such systems.

I
I
I
I
I
I
I
I
I
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APPENDIX A. DERIVATION OF RESTRICTIONS ON BDD ALGORITHM

Let us now determine the source of the two flaws of the BDD algorithm given in Section 4.2.2.

Note th.t. in a given iteration of the algorithm, the only error that can be incurred is in the

decision-making process, and the decision-making process is based on a LRT that uses an estimate

of the true parameter vector in the LR to classify the given sample. Thus, by examining the effects

on the error probability in the classification process due to the mismatch introduced from a lack of

knowledge of the true parameter vector value, some insight can be gained into the source of the

two flaws of the BDD algorithm. In particular, for a comprehensive range of values of

(A K, o-&) E A' and (A. K. r2 ) E A', we can compute the probability of making an incorrect

classification when (A. K, 0-2 ) is used in the LRT to classify the given observation given that

(A . K. 0 2 ) is the true parameter vector. The expression for this probability of error can be easily

derived by noting from the definition of ' . 2) given in Section 4.2.1 that this is simply the

probability of making an incorrect classification when the decision regions
Cr2). _ _),( A.X 2 I ,m

oT (A. . )(T (A- Er. o) are used. given that (A. K. 0_2) is the true parameter vector. Let us
apt opt

denote this probability of error by P, ((A. K. E_2 ); (A, K, 0 2 )). (In the sequel, the parenthetical

arguments will be included only if necessary for clarity.) We then have that

P. ((A. K. 2 ) ;(A. K. 2 ))

eAf po(z;A, K. a-2)dz + (1 -e -A ) O p(zA .K, 2dz
_. , ap)

2 A+K 1GO 2z A+K [K

opt A 2 KZ + (A. 1)

-A 00 m2e Am A+K ,2m+K dz: 0 2- -- -I
+(110f - e2 (1-e - =A m! m + K

After some manipulation. (A.1) yields the following expression for P. ((A. K, -2 ) (A . K, -
2

)):

I!
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Pa((A. K ;(A. K _2)) = e e + (1-- e-A )

opg fA+I
00 -A m +

e A 2 1m+K

m!=

Let fl{(a.3,E)(a./3.)EAandlogaE Z.log3 EZlog =0}. Given the above expression

for P,. we have computed, for each (A. K. a2) E fl. p, g((AK.o-2);(A,K,o'2)) for all

(A. K. 0.2) E f1. It is evident from (A.2) that the evaluation of these error probabilities requires

that r - - first be evaluated for all (A.K.-X 2) E fl. Since f (z'A. K. 2) is a strictly

monotone increasing function of z for each (A. K, "2 ) E A'. this was easily done using a numeri-

cal search procedure. The results are tabulated in Table A.1. (All tables referenced in this appen-

dix can be found at the end of the appendix.) Using the tabalated values for T ' - and (A.2).

Pc ((A . K. 2). (A . K, -2)) was then computed for the aforementioned values of (A . K. 0-.) and

(A, K. 0. ). The computed error probabilities are tabulated in Tables (A.2)-(A.6). (A.7)-(A.11).

and (A.12)-(A.16). We will now use these error probabilities to explain the observed difficulties of

the BDD algorithm cited above.

Explanation of Observed Difficulties

We will now justify the observed difficulties of the BDD algorithm, and, in so doing, obtain

restrictions on the form of the initiation vector (,A 0 0 for the algorithm. As stated in Sec-

tion 4.2.2. the observed difficulties of the algorithm are cited for the case when o is fixed so that

2 

2

a,, = 0. = 1 for all n > 0 and, thus. will be justified for this case.

Consider the tables for P.. Since r 4 K/A (see Eq. (2.6)), we see that for a given table, the

lines of constant r correspond to diagonals along that table, with I" attaining a maximum value

of 1 when (A, K)= (10 - 2 . 10- 2) and a minimum value of 10 -6 when (A .K)= (1 , 10-6). Note

from tables (A.2)-(A.6) and (A.7)-(A.11) that for fixed A. P, ((A. K. v
"2) ;(A , K. _2)) becomes

very large very rapidly with decreasing L for parameter vectors (A. K. 2) for which r is lessI
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than F. Moreover, for values of the parameter vectors (A. K. E_2) for which r" ?_ r. P. for these

parameter vectors is relatively small. Thus, we have a so-called "diagonal effect." wherein for

values of the parameter vectors (A. K. 2) for which r < r. the probability of error incurred in I
the decision-making process by using these vectors in the LRT when (A , K. .2) is the true parame-

ter vector is relatively large, whereas for values of the parameter vectors (A E K, o.2) for which

r ? F. the probability of error incurred is relatively small. Thus, for each (A . K, o,2). the "diago-

nal effect" divides the plane of A' consisting of parameter vectors for which the third coordinate

has unity value into an upper-diagonal and a lower-diagonal region as defined by the line I
corresponding to constant F. To parameter vector-, in the upper-diagonal region, we can associate u
values of P, that are predominantly small, and to those in the lower-diagonal region. we can asso-

ciate values of Pe that are predominantly large.

This phenomenon justifies the initial portion of the observation cited in (ii) of Section 4.2.2,

namely, that for initiation vectors (A 0 . K °0 . &0) for which ro > F. the frequency with which the I
algorithm converges to the true parameter vector is relatively high, whereas for initiation vectors

(Ao0, °o2 
0 . &) for which Po < r. the frequency with which the algorithm converges to the wrong

parameter vector is relatively high. We see then that the diagonal effect can be used advanta-

geously by always initiating the BDD algorithm with an initiation vector (A 0 . Ko , &) for which

(1) ro either provides an accurate estimate of F, or. Fo provides an estimate of F for which

fo> r. I

N. ,iat for each true parameter vector (A, K, 2) the upper-diagonal and lower-diagonal regions I
defined by the line of constant F have the aforementioned properties of

p . E K 2 ) (A. K. o2)) associateu with them if o'2 = 0,2 and o,2 = 1. The constraint given by

the hrst equality demands that the restriction given in (1) be accompanied by the additional

restriction that I
I
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(2) &2 must provide an accurate estimate of a 2 .

2 2 2

Given that o0 accurately estimates a we will. in addition, replace (4.8c) with an estimator of a,

consisting of an update equation for &o. In so doing, we will obtain an estimate equation for 0 2

which yields an accurate estimate of a-2 at each iteration of the algorithm.

The second constraint, namely 0-2 = 1, does not impose any additional restrictions for the fol-

lowing reason: From the approximation given in Step (2') of the MBDD algorithm (Section 4.3.1).

it can be seen that, via some minor approximations, the dependence of ( ,r (A. , ) on a' is essen-

tially linear for all (A, K, g 2 ) E A. From (A.2). it then follows that P, ((A. K,a02 ); (A, K, c 2))

depends only on the ratio of 02 to 02, i.e., given that 0, = a . the values for

P. ((A. K. E-2 ) ; (A. K. 0_2)) are essentially invariant to changes in a' 2 for each true parameter vec-

tor (A, K. 02). Consequently, since restriction (2) takes into account the fact that the properties

for P, are valid only when 0 = 0 , no additional restriction on a' need be imposed.

Note, in addition, from Tables (A.7)-(A.11) that for each true parameter vector (A . K. a "2
)

for which A = 1. there exists a set of vectors (A. /K 02) for which r > r but for which F. once

I again becomes relatively large. namely, the set of vectors for which r is approximately on the

order of 10- 1 or larger. The values for P tabulated for these r support the observation, cited in

(ii) of Section 4.2.2, that for values of A close to 1, the frequency with which the BDD algorithm

3 converges to the wrong parameter vector becomes relatively high for values of ro approximately on

the order of 10 or larger. Instead of translating this observation into a restriction on ro as was

done with the diagonal effect, we will see in the sequel that this observation more readily translates

into a restriction on A 0.'

Consider the observations cited in (i) of Section 4.2.2. Suppose that we have an iteration n"

for which the associated proportion of samples classified as impulsive exceeds the expected percent-

age (and for which all samples at iterations n K n" have been correctly classified). (In the sequel,

I this will be referred to as a situation wherein there is a "disproportionate excess of impulses.") Let
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us see how this can cause the algorithm to behave poorly: Since the proportion of samples classified

as impulsive at iteration n" exceeds the expected percentage, it follows from (4.8a) that the esti-

mate of A at that iteration will exceed the true A. Now, if the estimate of K at iteration n" is I
such that the estimate of r ( which is defined to be the estimate of K divided by the estimate of 3
A ) at that iteration either exceeds or equals the true r. then the estimate vector at iteration n"

will lie in the upper-diagonal region corresponding to the true parameter vector. Consequently, by

the "diagonal effect," the probability of error incurred in the decision-making process at the next

iteration of the algorithm will ten Eo be relatively low, and thus, with relatively high probability. I
the sample at iteration n"+ 1 will be classified correctly. However, if the estimate of K at iteration

n" is such that the estimate of r is less than the true F, then the estimate vector at iteration n"

will lie in the lower-diagonal region corresponding to the true parameter vector and, by the "diago-

nal effect." the probability of error incurred at the next iteration of the algorithm will tend to be

relatively high. Now, from Table A.1, we see that if the estimate vector is such that the estimate I
of A is greater than the true A and the estimate of r is less than the true r. then the optimum

threshold corresponding to the estimate vector will be less than the optimum threshold correspond-

ing to the true parameter vector. Given this and the relatively high probability of an incorrect

classification associated with the estimate vector lying in the lower-diagonal region. we have a

situation wherein a background sample can be incorrectly classified as an impulsive sample at the

next iteration of the algorithm. Since the estimate of A is directly proportional to the proportion

of samples that have been classified as impulsive (of course, within the boundary restrictions

imposed by A), an incorrect classification of a background sample as impulsive at iteration n"+ 1 3
will raise the estimate of A even further. Thus, via these successively increasing values for the

estimate of A,. the estimate vector can potentially be "forced away" from the true parameter vec- 3
tor. We see then that a disproportionate excess of impulses at a given iteration of the algorithm can

have a detrimental effect on its performance.

Note that the likelihood with which the performance of the algorithm is adversely affected 3
increases with increasing values obtained for the estimate of A. given that the estimate of A I
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I exceeds the true value. This is accounted for as follows: Consider Tables (A.4)-(A.6) and (A.7)-

(A.1I). In each table. note that for a fixed but arbitrary value of A. the portion of the lower-

diagonal region consisting of the parameter vectors for which the first coordinate is A is an inter-

val. and the length of this interval increases with increasing A. Thus, as the estimate of A

increases, the length of the interval associated with this estimate increases. Since this interval

defines the set of parameter vectors under consideration for which the first coordinate is the esti-

mate of A and for which the ratio of the second coordinate to the first is less than the true r, it

follows that as the estimate of A increases, the likelihood that the estimate of r will be less than

the true r increases. Given the ensuing detrimental effect on the behavior of the algorithm

(described in the previous paragraph) associated with the estimate of A being greater than the true

3 A and the estimate of r being less than the true r, it follows that the increased likelihood of the

estimate of r being less than the true r in turn increases the likelihood that the performance of the

m algorithm will be adversely affected.

3 It was noted in (i) of Section 4.2.2 that the convergence of the BDD algorithm is sensitive to

the distribution of impulses in the initial stages of the algorithm. That a disproportionate excess of

3 impulses at a given iteration of the algorithm is more likely to affect its convergence if the iteration

occurs in the initial stages of the algorithm follows from the fact that the estimates of the update

parameters and, hence, the estimates of the model parameters, are more sensitive to changes in the

number of samples classified as impulsive in the initial stages of the algorithm. For example. sup-

pose that the true value of the parameter A is 10 - 2. Since the corresponding true value for 7ri is

9.95X10 - 3. suppose, in addition, that Fr,(100) = 9.95X10 -3 . Now, if the sample at the 101-st itera-

tion is classified as impulsive, then 'ir(101) will be 1.98x10- 2 . However, if Frl(2000) = 9.95x10- 3

and the sample at the 2001-st iteration is classified as impulsive, then i(2001) will be 1.04X10-2 .

3 Thus, even though the proportions of samples classified as impulsive at the 100-th and 2000-th

iterations are the same (and are equal to the true value), an increase in the number of samples

m classified as impulsive by one (resulting in a disproportionate excess of impulses) yields a larger

value for the estimate of ir, at the 101-st iteration, and hence, a larger value for the estimate of A,I



I

104I

than at the 2001-st iteration (A 101 2.00x10 2 whereas A 2001 = 1.05x10 2 ) Since the estimate of

A associated with the 101-st iteration is larger than that corresponding to the 2001-st iteration

(and both exceed the true value), it follows from the observation cited in the first statement of the

previous paragraph that the performance of the algorithm is more likely to be adversely affected

by the estimate of A associated with the 101-st iteration. Via this example, we see then that a

disproportionate excess of impulse- at a given iteration of the algorithm is more likely to affect its

convergence if the iteration occurs in the initial stages of the algorithm.

It was also noted in (i) of Section 4.2.2 that a disproportionate excess of impulses will have a

significant effect on the convergence of the algorithm for values of A close to 10- 2. That a dispro-

portionate excess of impulses is more likely to affect the convergence of the algorithm for smaller

values of A is best explained with an example: Suppose that the true value of the parameter A is

10- 2 and suppose that the first impulsive sample occurs at the second iteration of the algorithm.

Then, given that the samples have been classified correctly, there will be a disproportionate excess 1
of impulses at this second iteration. Furthermore, the minimum possible iteration value for which 3
there will not be a disproportionate excess of impulses is 101 (such would be the case if there are

no impulses for iteration values 3 < (n < 101 and all samples are classified correctly). Now if the

true value of the parameter A is 10 - 1 and the first impulsive sample occurs at the second iteration

of the algorithm, then again there will be a disproportionate excess of impulses at this second itera- I
tion but the minimum possible iteration value thereafter for which there will not be a dispropor- 3
tionate excess of impulses is now 11. Thus, an iteration for which there is a disproportionate excess

of impulses has resulted in a greater number of ensuing iterations for which there is a dispropor- 3
tionate excess of impulses for the smaller value of A. Given the possible detrimental effect on the

performance of the algorithm associated with an iteration for which there is a disproportionate I
excess of impulses (discussed above), it follows that an increased number of iterations for which

there is such an excess increases the likelihood that the algorithm will behave poorly. We see then

that a disproportionate excess of impulses at a given iteration of the algorithm is more likely to 3
affect its convergence for smaller values of A. I
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Finally, let us justify the last observation cited in (i) of Section 4.2.2, namely, that for a fixed

value of the true parameter A. the likelihood that a disproportionate excess of impulses will affect

-- the convergence of the algorithm increases with increasing K: Consider Tables (A.2)-(A.6) and

(A. 7)-(A. 11). For each true parameter vector, let the "truncated lower-diagonal region" and "trun-

cated upper-diagonal region" denote the set of parameter vectors in the lower-diagonal region and

3 upper-diagonal region, respectively, for which the first coordinate exceeds the true A. Note that for

fixed value of the true parameter A and increasing value of the true parameter K. there is a

I corresponding increase in the size of the truncated lower-diagonal region associated with the true

3 parameter vector and a decrease in the size of the truncated upper-diagonal region. Now, suppose

that we have an iteration for which there is a disproportionate excess of impulses. Then the esti-

mate of A at that iteration will exceed the true A and, consequently, the estimate vector at that

iteration will either lie in the truncated lower-diagonal region or in the truncated upper-diagonal

I region corresponding to the true parameter vector. Since the size of the truncated lower-diagonal

region increases with increasing K, the probability that the estimate vector will lie in the truncated

lower-diagonal region increases with increasing K. Moreover, the estimate vector is more likely to

lie in the truncated lower-diagonal region associated with the true parameter vector than in the

truncated upper-diagonal region since the size of the first region relative to the second increases

3 with increasing K. Given the detrimental effect on the performance of the algorithm (discussed

earlier) that results from the estimate of A being greater than the true A and the estimate of r

being less than the true r, it follows from the increased likelihood of the estimate vector lying in

3 the truncated lower-diagonal region (and decreased likelihood of it lying in the truncated upper-

diagonal region) that there will be an increased likelihood of the algorithm performing poorly.

For fixed A. the most pronounced effect on the algorithm's convergence is for K = 10- 2 since

the truncated lower-diagonal region associated with the true parameter vector is largest for this

value of K. Moreover. the truncated upper-diagonal region is an empty set. This suggests a means

for improving the performance of the algorithm somewhat for larger values of K. namely by

extending the upper-diagonal region (and, hence, the truncated upper-diagonal region) associatedI
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with the parameter vectors corresponding to these larger values of K. This can be done by consid-

ering a modified parameter set consisting of the following parallelepiped:

((A . K. 42) 102 (A 4 i 1 ,2 > 0). However, given that A' is the parameter set I
of practical interest for the estimation problem at hand, another means of improving the perform- -
ance of the algorithm suggests itself by recalling that (a) a disproportionate excess of impulses

forces the estimate vector away from the true parameter vector through successively increasing

values in the estimate of A. and that (b) the performance of the algorithm is more likely to be

affected if the disproportionate excess of impulses occurs in the initial stages of the algorithm. U
From these earlier observations, we see then that an improvement in performance is possible if, in

the initial stages of the algorithm, the estimate of A is fixed to its initial value A o and only the

estimates of K and o-2 are updated. In this manner, the divergence of the estimate of A from its

true value can be prevented, and this. in turn. should increase the frequency with which the algo-

rithm converges to the true parameter vector. To accommodate this modification of the BDD algo- I
rithm. the following restriction on A o must be imposed: Namely.

(3) A, must either provide an accurate estimate of A . or. A 0 must provide an estimate of A for

which 4o< A. I

Suppose this was not the case. i.e.. suppose that A 0 were significantly larger than the true A. Now.

restrictions (1) and (2) on Fo and o',. respectively, guarantee that the initiation vector 3
(a o. 0o 20-) for the algorithm will lie in the upper-diagonal region corresponding to the true

parameter vector. Thus. the probability of error incurred in the decision-making process will be

relatively small initially. Consequently, with relatively high probability, the impulsive and back-

ground samples will be correctly classified and, eventually, this results in an estimate of K which I
accurately approximates the true value. (The estimate of a'2 will always accurately approximate 3
the true value for the reasons discussed above.) Eventually, then, we have a situation where the

estimate of A is fixed at its initial value A 0 and the estimates of K and o'2 accurately describe the

true values. i.e., the estimate vector of tle true parameter vector lies in the lower-diagonal region U
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corresponding to the true parameter vector. Thus, the probability of error associated with this esti-

mate vector will be relatively high and this may adversely affect the estimate of K and/or the esti-

mate of A (if the algorithm is at the stage where the estimate of A is once again being updated).

Given these ensuing adverse effects on the estimates of the parameters resulting from A& being

larger than the true A , we necessarily impose the restriction given in (3).

Recall our earlier observation that for parameter vectors (A, K. o"2 ) for which A = 1

(cr2 1). P, ((A. K. -2). (A . K. o 2)) becomes relatively large for parameter vectors (A. K. 0 -
2)

( 2= 1) for which r is approiimately on the order of 10- 1 or larger. In particular. for the true

3 parameter vector (A. K. o-2) = (1 . 10-2, 1), the vectors (A. K. g-2) for wv'ich A < 10- 1.

K = 10 - 2 . and o' 2 = I fall in this category. Note that for these vectors the value of A is less than

A by an order of magnitude or more. Thus. as this example indicates, if the initiation vector for

the algorithm has a value for A 0 o which is less than the true A by an order of magnitude or more.

I then it is possible that the probability of error incurred in the decision-making process will be rela-

3 tively large in the initial stages of the algorithm. Consequently. we replace condition (3) with the

more stringent condition that

(3') 0 must either provide an accurate estimate of A . or. A 0 must provide an estimate of A for

which A' 0 < A and not less by an order of magnitude or more.

3 Note that the region. defined jointly by conditions (1) and (3'). from which (A o. ro) can be

chosen consists of a trapezoid. Now, the BDD algorithm directly provides initial estimates for the

3 parameters A and K. not A and r. Thus, it is necessary to translate restrictions (1) and (3') on ro

and A 0 . respectively, into restrictions on Ko and A 0 . Given that ro is the ratio of Ko to A 0 .

restrictions (1) and (3') do not yield a restriction for Ko in terms of a simple inequality, as they

3 did for F0 and ' o- Consequently. instead of attempting to obtain estimates (A 0 ./ko) such that the

associated estimates (A , fo) lie in the aforementioned trapezoid. we will instead attempt to obtain

5 estimates (Ao,/o) for which A0 satisfies (3') and for which Ko satisfies the following restriction:

I
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(W) Ko must either provide an accurate estimate of K. or, K 0 must provide an estimate of K for

which o > K,

i.e., the set of vectors from which the estimates (A K 0 ) can be chosen is simply the largest rectan-

gle contained in the aforementioned trapezoid. Note that restriction (1') on Ko is satisfied if we set I
Ko to the maximum allowable value for the parameter K. Note, in addition, from the tables given

for Pe. that for a fixed value of A < A. P, ((A . K. _ 2)(A. K. 02)) decreases with decreasing

values of K > K. Thus, to use this property of P, more advantageously, we will modify restrici- 3
tion (W) as follows: I
(1") K must either provide an accurate estimate of K. or. Ko must provide an estimate of K for

which Ko > K and not greater by two orders of magnitude or more. I

In summary then, we see from (1"). (2). and (3') and the above discussion that the following 3
restrictions (on (A 0.K 0 . &2)) and modifications must be imposed: I

(Ri) A 0 must either provide an accurate estimate of A. or. A 0 must provide an estimate of A

for which A o < A and not less by an order of magnitude or more. I

(R2) K must either provide an accurate estimate of K. or. Ko must provide an estimate of K I
for which (o>K and not greater by two orders of magnitude or more. 3

-22

(R3) 0-2 must provide an accurate estimate of a2. I

(M) The estimator of a 2 given by Eq. (4.8c) must be replaced by an estimator of ,2 consisting 3
of an update equation for 0&o2

I
(M2) The estimate of A must be fixed to its initial value 2i 0 in the initial stages of the algorithm.

with only the estimates of K and o.2 being updated. 3
I
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Table A.1. Ao - FOR (A.K._ E

K 10- 2 10- 3  10 4  10 - 5 I0 - 6

A

10 - 2 2.1575 1.0235 0.3698 0.1269 4.2914 x 10 - 2

10 - 1 0.7955 0.3017 0.1071 3.7134 X 10' 1.2686 X 10- 2

0.2081 8.1435 x 10- 2  2.9890 x 10 -' 1.0600 x 10- 2  3.6796 x10 - 3

I
I

I

I
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TableA.2. P, (A.02)(A.K., r 2)) FOR (A.K.o_2 ) E L AND 3
(A K. 0_2) (10 - 2. 10- 2. 1)

K 10 - 2 10- 3  10--4  10-  10-6 3
A

10- 2 9.6367X10' 0.1220 0.7531 0.9587 0.9864 I
10-1 0.2794 0.8253 0.9676 0.9873 0.9897

1 0.9079 0.9770 0.9883 0.9898 0.9900 I
Table A.3. P,((A,K0.- 2 )'(A.Ko2)) FOR (A.,. ) E a ANDI

(A. K, 0-2 ) =(10 - 2 . 10-3. 1)

K 10-2 10-3  10-4 10 - 5  10-6 1
A

10- 2 4.9496x10- 1.2340x 10-4 0.2199 0.8294 0.9702 1
10 - ' 1.0081x10 - 3  0.3637 0.8726 0.9751 0.9883 I
1 0.6148 0.9204 0.9804 0.9888 0.9899 I

Table A.4. Pe((A.K, 0-2):(A,.K..2)) FOR (A, K, "2) E ai AND

(A. K. 02) =( 102. 10, 1) I
K 10-2 10- 3  10-4 10-5  103-6

A

10- 2 4.5580x10 "4  1.0445x10-4 1.4692x10 - 5  0.1947 0.8220 3
10- _ 6.3223X10 "' 1.0964X10' 0.3106 0.8613 0.9741

1 1.2462x10- 2  0.5067 0.9046 0.9789 0.9887

I
I
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I
3 Table A.5. Pe ((AK.c 2): (A K, .0_ 2 )) FOR (A, K. "2) E fl AND

(A,K.o') =(10 -2 , 10-5 , 1)

K 10 - 2 10-- 3  10 10- 5  10-6

A

I 10- 2 4.5188x10' 1.0353x10' 1.3580x10 -  1.6986X10' 0.1567

10- 1 6.2667x10-  9.0409x10 - 6  1.1281x10 -  0.2490 0.8427

1 4.3031x10 6 1.2968x10 - 3  0.4048 0.8847 0.9767

TableA.6. P((AK.02);(A,K.02)) FOR (AKcE 2 ) E a AND
(A. K. 02) 10-2, 1-6)

_ K 10 - 2  10 - 3  110 410 - 5  I0___6

I 102 4.5148x10 '
_ 1.0344x10 - 4  1.3568X10 - 5 1.5980x10 6  1.9273x10 - 7

3 10- 1  6.2612X10_-  9.0329X106 1.1392x10 - 6  1.1521X10 - 6 0.1980

I 4.2992x10' 6.5826x10- 7  1.3045X10' 0.3218 0.8647I
I
I
I
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Table A.7. Pe((A,K,0)"(AK,. 2 )) FOR (A ZK.) E al AND

(A .K. Cr2 ) =(10 - 1 10- 2. 1)

K 10 - 2 10 - 3  10 - 4  10-5 10 -6

A

10- 2 3.7025x10 - 2  1.0023X10 - 2  0.2024 0.7581 0.8867 1
10- 1 7.0416x10 - 3  0.3333 0.7976 0.8912 0.9032 3
1 0.5623 0.8412 0.8960 0.9037 0.9047

Table A.8. P ((AK _ 2).(A.K.,0 2)) FOR (A,K,__ 2) E a AND

(A. K. -) =( 10-1 10-3. 1)

K 10 - 2 10 - 3 10 ..4  10- 5  10 -6

10- 2 3.4883x10 - 2  9.3140x10 - 3  1.2729x10 - 3  0.1781 0.7513 1
10- 1 5.7418X10 - 3  9.4046X10' 0.2840 0.7872 0.8903 3
S 1.1790X10- 2  0.4632 0.8268 0.8946 0.9036

I
Table A.9. P,((A.K.0):(A.K..)) FOR (A.K.cr 2) E il AND

(A . K. 02)( 10-1. 10. 1)

K 10 - 2 10 - 3  10 -- 4  10 - 5  10 --6

A -

10 - 2 3.4662X10 - 2  9.2430x10- 3  1.2618X10 - 3  1.4951X10' 0.1432 3
10 -  5.6972x10- 3  8.4180X10-4 1.1581x10 -  0.2276 0.7702

I 4.015lX O 1.2462X10 - 3  0.3700 0.8086 0.8927

I
I
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3 Table A.10. P;((A._.c"2 ) ' (A.K. 2 )) FOR (A.K. 2 ) E fl AND

(A. K, o 2)=( 0- '. 10- ', 1)

K 10 - 2  10 - 3  10 - 4  10 - 5  10 - 6

A

10- 2  3.4640x10 - 2  9.2359x10- 3  1.2608x10 - 3  1.4929x10 - 4  1.7099x10 - 5

10- 1 5.6927x10 - 3  8.4112x10' 1.0646x10 '  1.3724x10 -5  0.1810

1 4.0118x10 - 4  6.1526x)10- 5  1.2744x10 -' 4  0.2941 0.7902

TableA.11. P e((AK .2 )(A,K,-)) FOR (AK, & ) E a AND
(A. K, 0_2 ) -- ( 10 - 1, 10 "1 . 1)

K 10 - 2 10 - 3  10 - 4  10 - 5  10 ---6

A

10- 2  3.4637x10 - 2  9.2352x10 - 3  1.2607x10 - 3  1.4928x10' 1.7088x10 - 5

10- 1 5.6922x10- 3  8.4106xi0 -  1.0645x10' 1.2795X10' 1.5862x10-6

1 4.0115X10- 4 6.1521X10 - 5 8.2904x10 1.2966x10 - 5 0.2336
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Table A.12. P,((A.K.,o2);(AK.i 2)) FOR (A.:K,E 2 )E fl AND
(A. K. o-2) -( 1, 10 - 2 , 1)

K 10-2 10 - 3  10 -4  10 - 5  10I- 6

A _

10- 2 0.5918 0.3365 6.2612X10 - 2  8.0124X10 2  0.3063 1
10- 1 0.2370 4.2532X10 - 2  0.1210 0.3207 0.3620 3
1 2.5268x10 0.1915 0.3366 0.3638 0.3674 I

Table A.13. P,((A.-K.cT:2)'(A.K.0 2)) FOR (A.K._ 2 )E a AND

(AK. .K 2) =( 1. 10 - . 1)

K 10 - 2 10 -3 10-4  I0-5 10 -6
A

10- 2 0.5915 0.3361 6.2539X10- 2  7.7522X10- 3  5.9115X10- 2  3
10- 1  0.2367 4.2445X10' 5.5414X10 - 3  9.3193x10 - 2  0.3132

1 2.0615X10 2  3.6880X10 - 3
, 0.1509 0.3288 0.3629

I
TableA.14. P,((A.K,.2):(A.K.2)_ FOR (AL..K, 2) E fl AND

(A, K/" 0_2) -- 1. 10
-4 , 

1)m

K 10- 2 10o-3  10-4 10- 103-6

10- 2 0.5914 0.3361 6.2531X10 - 2  7.7513x10 - 3  8.9218x10-4 3
10- 1 0.2367 4.2440x10 - 2  5.5370x10- 3  6.6852x10- 7.3654x10 - 2

2.0613xi0 3.2060x10 -3  4.8144x10-4 0.1196 0.3213

m
m
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I
3 TableA.15. PE((A 2K,);(A.K,0

2)) FOR (A. 2) E al AND
(A.KoO-_2)-= ( 1. 10-1. 1)

I K 10- 2 10-3  10 I0-5 10-
A

10-2  0.5914 0.3361 6.2531X10 - 2  7.7512X10 - 3  8.9216xi0 -

3 10 - 1 0.2367 4.2440x10 -
2 5.5369x10' 6.6813X10' 7.8054x10 - _

1 2.0613X10 - 2  3.2060x10 - 3  4.3299X10' 5.9325X10 - ' 9.4999x10 - 2

I
TableA.16. Pe((A.K..)"(AK.0- 2 )) FOR (A K.-_2 )E ai AND

(A, Ko -2) = ( 1. 10'. 1)

I K 10-2 10- 3  10-4  10-5  10 "-
A

10-2  0.5914 0.3361 6.2531X10 - 2  7.7512X10 - 3  8.9216X10 4

10- 1 0.2367 4.2440XI0 -  5.5369XI0 - 3  6.6813X10 '  7.8017x10 - 5

1 2.0613X10' 3.2060X10 - 3  4.3299X10' 5.4477X10 - ' 7.0491x107I
I
I
I
I
I
I
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APPENDIX B. EXPRESSIONS FOR THE COEFFICIENTS OF EQ. (5.28)

Let a and aij (L = U . n ;j = 2.....) be defined as in Section 5.3. Futhermore. let 3
m

p1 (1 +Z ) 2 )ai3

i=-
1 283-,-, z l --2

i=1 J--2 (j -1)2 I
and

n a* 2 t j

Then.

2 2 )2

C2=/30 2 934
n 2 l3_ 2

29/3
4 n 234l n )

22
+(20304n -134fl +2 n +2934an)(85+n)

(932n)(05+n)2 .

c 3 =( 4 n 3 + 2030 4 n -3 10 4 n 2 "t 2 84 an 2 )

(021 4 n 0323 n -- 1930 4 -- p13 4 an +293p 4 an +9 4 a
2

n) n

+(--0 2 n -393 2 9 3 n +219 2 n -3 2 an)( 5 +n)

+ (n2 +93 3 n -13n)(A 5 +n )
2

c4=(- 2 12 3 n 2-23 2 2n +2p13 2 9 3 n -29 2 033 an)

+(29 3 n 2--3 1 n 2-- 3910 3 n +283n +p2 n -1lan +20 3 cn)(05 +n) 3
and

c-(83 3 n 3- 23 1 93 n 2 +2 p2 n 2 +28 3 an 2) I
"+'(/3 3 n-299 1 t32n +03n -20 1 3 an +2 3an n0 3 a 2 n) .

I
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